胡斯勒图
性别:男
职称:研究员
专家类别:博导/研究员
电话:010-64889778
邮箱:huslt@aircas.ac.cn
地址:北京朝阳区大屯路甲20号北
胡斯勒图,中国科学院空天信息创新研究院研究员(二级),博导,遥感与数字地球全国重点实验室主任,IRC国际辐射委员会委员,IEEE高级会员。主要从事大气遥感和云-辐射-气候变化研究。
主持国家重点研发计划项目、第二次青藏高原综合科学考察研究专题(共同负责)、国家自然科学基金委重点基金等多项科研项目,在Bulletin of the American Meteorological Society、Remote Sensing of Environment、The Innovation等顶刊发表SCI论文 150 余篇。构建了从冰晶粒子光散射及大气辐射传输机理、云宏微观参数遥感反演方法、全球辐射平衡估算到卫星计划应用的系统性研究框架,并取得了多项原创性成果。所创建的云特性新算法被日本宇航局和欧洲空间局的4 个国际卫星计划官方采纳,同时也被5家国产卫星业务系统采纳应用;构建的地表太阳辐射高精度产品和实时监测系统被CCTV-1新闻联播、CCTV-13等多家媒体报道,相关成果获联合国工业发展组织2023年“全球清洁能源创新奖”等奖项。现任IEEE J-MASS、Atmospheric Science Letters、Journal of Remote Sensing等期刊副主编,Remote Sensing of Environment、The Innovation、遥感学报、气象科学等期刊编委,并担任IEEE GRSS北京分会主席、中国气象学会卫星气象专委会主任(共同)、国际大气云辐射学术研讨会(CARE)主席和发起人等职位。
1. Chen,X.,Letu,H.,Shang,H.,Ri,X.,Tang,C.,Ji,D.,Shi,C.,Teng,Y.,2024. Rainfall Area Identification Algorithm Based on Himawari-8 Satellite Data and Analysis of its Spatiotemporal Characteristics.REMOTESENSING16. https://doi.org/10.3390/rs16050747
2. Shang,H.,Letu,H.,Xu,R.,Wei,L.,Wu,L.,Shao,J.,Nagao,T.M.,Nakajima,T.Y.,He,J.,Riedi,J.,Chen,L.,2024. A hybrid cloud detection and cloud phase classification algorithm using classic threshold-based tests and extra randomized tree model.REMOTESENSINGOFENVIRONMENT 302. https://doi.org/10.1016/j.rse.2023.113957
3. Sun,Q.,Ji,D.,Letu,H.,Ni,X.,Zhang,H.,Wang,Y.,Li,B.,Shi,J.,2024. A method for estimating high spatial resolution total precipitable water in all-weather condition by fusing satellite near-infrared and microwave observations.REMOTESENSINGOFENVIRONMENT 302. https://doi.org/10.1016/j.rse.2023.113952
4. Wang,W.,Shi,C.,Shang,H.,Yin,S.,Xu,J.,Xu,N.,Chen,L.,Letu,H.,2024. Development of an Algorithm for the Simultaneous Retrieval of Cloud-Top Height and Cloud Optical Thickness Combining Radiative Transfer and Multisource Satellite Information From O₄ Hyperspectral Measurements. IEEE Trans. Geosci. Remote Sensing 62,1–11. https://doi.org/10.1109/TGRS.2024.3385030
5. Wei,L.,Shang,H.,Xu,J.,Shi,C.,Tana,G.,Chao,K.,Bao,S.,Chen,L.,Letu,H.,2024. Cloud Top Pressure Retrieval Using Polarized and Oxygen A-band Measurements from GF5 andPARASOLSatellites.ADVANCESINATMOSPHERICSCIENCES41,680–700. https://doi.org/10.1007/s00376-023-2382-5
6. Xian,Y.,Wang,T.,Leng,W.,Letu,H.,Shi,J.,Wang,G.,Yan,X.,Yuan,H.,2024. Can Topographic Effects on Solar Radiation Be Ignored: Evidence From the Tibetan Plateau.GEOPHYSICALRESEARCHLETTERS51. https://doi.org/10.1029/2024GL108653
7. Zhang,T.,Letu,H.,Dai,T.,Shi,C.,Lei,Y.,Peng,Y.,Lin,Y.,Chen,L.,Shi,J.,Tian,W.,Shi,G.,2024. Estimating hourly surface shortwave radiation over northeast of the Tibetan Plateau by assimilating Himawari-8 cloud optical thickness.GEOSCIENCELETTERS11. https://doi.org/10.1186/s40562-023-00312-8
8. An,N.,Shang,H.,Lesi,W.,Ri,X.,Shi,C.,Tana,G.,Bao,Y.,Zheng,Z.,Xu,N.,Chen,L.,Zhang,P.,Ye,L.,Letu,H.,2023. A Cloud Detection Algorithm for Early Morning Observations From the FY-3E Satellite.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3304985
9. Chen,Y.,Yue,X.,Tian,C.,Letu,H.,Wang,L.,Zhou,H.,Zhao,Y.,Fu,W.,Zhao,X.,Peng,D.,Zhang,J.,2023. Assessment of solar energy potential in China using an ensemble of photovoltaic power models.SCIENCEOF THETOTALENVIRONMENT 877. https://doi.org/10.1016/j.scitotenv.2023.162979
10. Gao,X.,Pan,J.,Peng,Z.,Zhao,T.,Bai,Y.,Yang,J.,Jiang,L.,Shi,J.,Husi,L.,2023. Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations.REMOTESENSING15. https://doi.org/10.3390/rs15082065
11. Khatri,P.,Hayasaka,T.,Holben,B.N.,Singh,R.P.,Letu,H.,Tripathi,S.N.,2023. Increased aerosols can reverse Twomey effect in water clouds through radiative pathway (vol 12,20666,2022).SCIENTIFICREPORTS13. https://doi.org/10.1038/s41598-023-28028-x
12. Lei,Y.,Li,R.,Letu,H.,Shi,J.,2023. Seasonal Variations of Recharge-Storage-Runoff Process over the Tibetan Plateau.JOURNALOFHYDROMETEOROLOGY 24,1619–1633. https://doi.org/10.1175/JHM-D-23-0045.1
13. Leng,W.,Wang,T.,Wang,G.,Letu,H.,Wang,S.,Xian,Y.,Yan,X.,Zhang,Z.,2023. All-sky surface and top-of-atmosphere shortwave radiation components estimation: Surface shortwave radiation,PAR,UV radiation,and TOA albedo.REMOTESENSINGOFENVIRONMENT 298. https://doi.org/10.1016/j.rse.2023.113830
14. Letu,H.,Ma,R.,Nakajima,T.Y.,Shi,C.,Hashimoto,M.,Nagao,T.M.,Baran,A.J.,Nakajima,T.,Xu,J.,Wang,T.,Tana,G.,Bilige,S.,Shang,H.,Chen,L.,Ji,D.,Lei,Y.,Wei,L.,Zhang,P.,Li,J.,Li,L.,Zheng,Y.,Khatri,P.,Shi,J.,2023a. Surface Solar Radiation Compositions Observed from Himawari-8/9 and Series.BULLETIN OFTHEAMERICANMETEOROLOGICALSOCIETY104,E1772–E1789. https://doi.org/10.1175/BAMS-D-22-0154.1
15. Li,J.,Zhang,F.,Li,W.,Tong,X.,Pan,B.,Li,Jun,Lin,H.,Letu,H.,Mustafa,F.,2023. Transfer-Learning-Based Approach to Retrieve the Cloud Properties Using Diverse Remote Sensing Datasets.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3318374
16. Li,M.,Letu,H.,Ishimoto,H.,Li,S.,Liu,L.,Nakajima,T.Y.,Ji,D.,Shang,H.,Shi,C.,2023. Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models.ATMOSPHERICMEASUREMENTTECHNIQUES 16,331–353. https://doi.org/10.5194/amt-16-331-2023
17. Li,S.,Liu,L.,Letu,H.,Hu,S.,Dong,P.,Ren,H.,Ye,J.,2023. Evaluation of the impacts of ice cloud vertical inhomogeneity on spaceborne passive submillimeter-wave simulations.QUARTERLYJOURNALOF THEROYALMETEOROLOGICALSOCIETY149,1073–1089. https://doi.org/10.1002/qj.4457
18. Shang,H.,Hioki,S.,Penide,G.,Cornet,C.,Letu,H.,Riedi,J.,2023. Establishment of an analytical model for remote sensing of typicalstratocumulus cloud profiles under various precipitation and entrainmentconditions.ATMOSPHERICCHEMISTRYANDPHYSICS23,2729–2746. https://doi.org/10.5194/acp-23-2729-2023
19. Shao,J.,Letu,H.,Ri,X.,Tana,G.,Wang,T.,Shang,H.,2023. Estimation of Surface Downward Longwave Radiation and Cloud Base Height Based on Infrared Multichannel Data of Himawari-8.ATMOSPHERE 14. https://doi.org/10.3390/atmos14030493
20. Tan,Z.,Ma,S.,Liu,C.,Teng,S.,Letu,H.,Zhang,P.,Ai,W.,2023. Retrieving cloud base height from passive radiometer observations via a systematic effective cloud water content table.REMOTESENSINGOFENVIRONMENT 294. https://doi.org/10.1016/j.rse.2023.113633
21. Tana,G.,Ri,X.,Shi,C.,Ma,R.,Letu,H.,Xu,J.,Shi,J.,2023. Retrieval of cloud microphysical properties from Himawari-8/AHI infrared channels and its application in surface shortwave downward radiation estimation in the sun glint region.REMOTESENSINGOFENVIRONMENT 290. https://doi.org/10.1016/j.rse.2023.113548
22. Tang,C.,Shi,C.,Letu,H.,Ma,R.,Yoshida,M.,Kikuchi,M.,Xu,J.,Li,N.,Zhao,M.,Chen,L.,Shi,G.,2023. Evaluation and uncertainty analysis of Himawari-8 hourly aerosol product version 3.1 and its influence on surface solar radiation before and during the COVID-19 outbreak.SCIENCEOF THETOTALENVIRONMENT 892. https://doi.org/10.1016/j.scitotenv.2023.164456
23. Tong,X.,Li,Jingwei,Zhang,F.,Li,W.,Pan,B.,Li,Jun,Letu,H.,2023. The Deep-Learning-Based Fast Efficient Nighttime Retrieval of Thermodynamic Phase From Himawari-8 AHI Measurements.GEOPHYSICALRESEARCHLETTERS50. https://doi.org/10.1029/2022GL100901
24. Wang,Q.,Zhou,C.,Letu,H.,Zhu,Y.,Zhuge,X.,Liu,C.,Weng,F.,Wang,M.,2023. Obtaining Cloud Base Height and Phase From Thermal Infrared Radiometry Using a Deep Learning Algorithm.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3317532
25. Wang,T.,Wang,G.,Shi,C.,Du,Y.,Letu,H.,Zhang,W.,Xue,H.,2023a. Improved Algorithm to Derive All-Sky Longwave Downward Radiation From Space: Application to Fengyun-4A Measurements(vol 61,4103213,2023).IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3297859
26. Wang,T.,Wang,G.,Shi,C.,Du,Y.,Letu,H.,Zhang,W.,Xue,H.,2023b. Improved Algorithm to Derive All-Sky Longwave Downward Radiation From Space: Application to Fengyun-4A Measurements.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3289058
27. Wang,Y.,Shang,H.,Letu,H.,Wei,L.,Chen,F.,Hong,J.,Wang,Z.,Chen,L.,2023. Impact of Orbital Characteristics and Viewing Geometry on the Retrieval of Cloud Properties From Multiangle Polarimetric Measurements.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3329305
28. Xian,Y.,Wang,T.,Cheng,W.,Letu,H.,Du,Y.,Leng,W.,2023. A Uniform Model for Correcting Shortwave Downward Radiation Over Rugged Terrain at Various Scales.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3278081
29. Yao,X.,Yang,K.,Letu,H.,Zhou,X.,Wang,Y.,Ma,X.,Lu,H.,La,Z.,2023. Observation and Process Understanding of Typical Cloud Holes Above Lakes Over the Tibetan Plateau.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 128. https://doi.org/10.1029/2023JD038617
30. Zhang,X.,Shi,C.,Si,Y.,Letu,H.,Wang,L.,Tang,C.,Xu,N.,He,X.,Yin,S.,Zhang,Z.,Chen,L.,2023. Remote Sensing of Aerosols and Water-Leaving Radiance from Chinese FY-3/MERSI Based on a Simultaneous Method.REMOTESENSING15. https://doi.org/10.3390/rs15245650
31. Zhao,C.,Yang,Y.,Chi,Y.,Sun,Y.,Zhao,X.,Letu,H.,Xia,Y.,2023. Recent progress in cloud physics and associated radiative effects in China from 2016 to 2022.ATMOSPHERICRESEARCH 293. https://doi.org/10.1016/j.atmosres.2023.106899
32. Zhao,D.,Lin,Y.,Dong,W.,Qin,Y.,Chu,W.,Yang,K.,Letu,H.,Huang,L.,2023. Alleviated WRF Summer Wet Bias Over the Tibetan Plateau Using a New Cloud Macrophysics Scheme.JOURNALOFADVANCESINMODELINGEARTHSYSTEMS15. https://doi.org/10.1029/2023MS003616
33. Zhu,S.,Xu,J.,Fan,M.,Yu,C.,Letu,H.,Zeng,Q.,Zhu,H.,Wang,H.,Wang,Y.,Shi,J.,2023. Estimating Near-Surface Concentrations of Major Air Pollutants From Space: A Universal Estimation Framework LAPSO.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3248180
34. He,J.,Letu,H.,Lei,Y.,Guo,E.,Bao,S.,Zhang,Y.,Tana,G.,Bao,Y.,2022. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979-2020.REMOTESENSING14. https://doi.org/10.3390/rs14030685
35. Khatri,P.,Hayasaka,T.,Holben,B.N.,Singh,R.P.,Letu,H.,Tripathi,S.N.,2022a. Increased aerosols can reverse Twomey effect in water clouds through radiative pathway.SCIENTIFICREPORTS12. https://doi.org/10.1038/s41598-022-25241-y
36. Khatri,P.,Hayasaka,T.,Irie,H.,Letu,H.,Nakajima,T.Y.,Ishimoto,H.,Takamura,T.,2022b. Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data.ATMOSPHERICMEASUREMENTTECHNIQUES 15,1967–1982. https://doi.org/10.5194/amt-15-1967-2022
37. Letu,H.,Nakajima,T.Y.,Wang,T.,Shang,H.,Ma,R.,Yang,K.,Baran,A.J.,Riedi,J.,Ishimoto,H.,Yoshida,M.,Shi,C.,Khatri,P.,Du,Y.,Chen,L.,Shi,J.,2022. A New Benchmark for Surface Radiation Products over the East Asia-Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite.BULLETIN OFTHEAMERICANMETEOROLOGICALSOCIETY103,E873–E888. https://doi.org/10.1175/BAMS-D-20-0148.1
38. Li,M.,Letu,H.,Peng,Y.,Ishimoto,H.,Lin,Y.,Nakajima,T.Y.,Baran,A.J.,Guo,Z.,Lei,Y.,Shi,J.,2022. Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations.ATMOSPHERICCHEMISTRYANDPHYSICS22,4809–4825. https://doi.org/10.5194/acp-22-4809-2022
39. Li,R.,Hu,J.,Wu,S.,Zhang,P.,Letu,H.,Wang,Y.,Wang,X.,Fu,Y.,Zhou,R.,Sun,L.,2022. Spatiotemporal Variations of Microwave Land Surface Emissivity (MLSE) over China Derived from Four-Year Recalibrated Fengyun 3B MWRI Data.ADVANCESINATMOSPHERICSCIENCES39,1536–1560. https://doi.org/10.1007/s00376-022-1314-0
40. Ri,A.,Ma,R.,Shang,H.,Xu,J.,Tana,G.,Shi,C.,He,J.,Bao,Y.,Chen,L.,Letu,H.,2022. Influence of multilayer cloud characteristics on cloud retrieval and estimation of surface downward shortwave radiation.FRONTIERSINENVIRONMENTALSCIENCE10. https://doi.org/10.3389/fenvs.2022.857414
41. Ri,X.,Tana,G.,Shi,C.,Nakajima,T.Y.,Shi,J.,Zhao,J.,Xu,J.,Letu,H.,2022. Cloud,Atmospheric Radiation and Renewal Energy Application (CARE) Version 1.0 Cloud Top Property Product From Himawari-8/AHI: Algorithm Development and Preliminary Validation.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING60. https://doi.org/10.1109/TGRS.2022.3172228
42. Wang,S.,Wang,T.,Leng,W.,Wang,G.,Letu,H.,2022. Toward an Improved Global Longwave Downward Radiation Product by Fusing Satellite and Reanalysis Data.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING60. https://doi.org/10.1109/TGRS.2022.3179017
43. Zhao,C.,Wang,Y.,Letu,H.,2022. New Progress and Challenges in Cloud-Aerosol-Radiation-Precipitation Interactions: Preface for a Special Issue.ADVANCESINATMOSPHERICSCIENCES39,1983–1985. https://doi.org/10.1007/s00376-022-2009-2
44. Zhou,G.,Wang,J.,Yin,Y.,Hu,X.,Letu,H.,Sohn,B.-J.,Yung,Y.L.,Liu,C.,2022. Detecting Supercooled Water Clouds Using Passive Radiometer Measurements.GEOPHYSICALRESEARCHLETTERS49. https://doi.org/10.1029/2021GL096111
45. Ji,D.,Shi,J.,Letu,H.,Li,W.,Zhang,H.,Shang,H.,2021. A Total Precipitable Water Product and Its Trend Analysis in Recent Years Based on Passive Microwave Radiometers.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING14,7324–7335. https://doi.org/10.1109/JSTARS.2021.3096535
46. Liu,L.,Weng,C.,Li,S.,Husi,L.,Hu,S.,Dong,P.,2021. Passive Remote Sensing of Ice Cloud Properties at Terahertz Wavelengths Based on Genetic Algorithm.REMOTESENSING13. https://doi.org/10.3390/rs13040735
47. Wang,J.,Jian,B.,Wang,G.,Zhao,Y.,Li,Y.,Letu,H.,Zhang,M.,Li,J.,2021. Climatology of Cloud Phase,Cloud Radiative Effects and Precipitation Properties over the Tibetan Plateau.REMOTESENSING13. https://doi.org/10.3390/rs13030363
48. Yan,X.,Zang,Z.,Jiang,Y.,Shi,W.,Guo,Y.,Li,D.,Zhao,C.,Husi,L.,2021a. A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM2.5.ENVIRONMENTALPOLLUTION 273. https://doi.org/10.1016/j.envpol.2021.116459
49. Yan,X.,Zang,Z.,Zhao,C.,Husi,L.,2021b. Understanding global changes in fine-mode aerosols during 2008-2017 using statistical methods and deep learning approach.ENVIRONMENTINTERNATIONAL 149. https://doi.org/10.1016/j.envint.2021.106392
50. Yu,Y.-C.,Shi,J.,Wang,T.,Letu,H.,Zhao,C.,2021. All-sky total and direct surface Shortwave Downward Radiation (SWDR) estimation from satellite: Applications to MODIS and Himawari-8.INTERNATIONALJOURNALOFAPPLIEDEARTHOBSERVATIONANDGEOINFORMATION102. https://doi.org/10.1016/j.jag.2021.102380
51. Bao,S.,Letu,H.,Zhao,J.,Lei,Y.,Zhao,C.,Li,J.,Tana,G.,Liu,C.,Guo,E.,Zhang,J.,He,J.,Bao,Y.,2020. Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003-2017.INTERNATIONALJOURNALOFCLIMATOLOGY 40,4082–4101. https://doi.org/10.1002/joc.6444
52. Du,B.,Ji,D.,Shi,J.,Wang,Y.,Lei,T.,Zhang,P.,Letu,H.,2020. The Retrieval of Total Precipitable Water over Global Land Based on FY-3D/MWRI Data.REMOTESENSING12. https://doi.org/10.3390/rs12091508
53. Lei,Y.,Letu,H.,Shang,H.,Shi,J.,2020. Cloud cover over the Tibetan Plateau and eastern China: a comparison of ERA5 and ERA-Interim with satellite observations.CLIMATEDYNAMICS 54,2941–2957. https://doi.org/10.1007/s00382-020-05149-x
54. Letu,H.,Shi,J.,Li,M.,Wang,T.,Shang,H.,Lei,Y.,Ji,D.,Wen,J.,Yang,K.,Chen,L.,2020a. A review of the estimation of downward surface shortwave radiation based on satellite data: Methods,progress and problems.SCIENCECHINA-EARTHSCIENCES 63,774–789. https://doi.org/10.1007/s11430-019-9589-0
55. Letu,H.,Yang,K.,Nakajima,T.Y.,Ishimoto,H.,Nagao,T.M.,Riedi,J.,Baran,A.J.,Ma,R.,Wang,T.,Shang,H.,Khatri,P.,Chen,L.,Shi,C.,Shi,J.,2020b. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite.REMOTESENSINGOFENVIRONMENT 239. https://doi.org/10.1016/j.rse.2019.111583
56. Li,W.,Zhang,F.,Shi,Y.-N.,Iwabuchi,H.,Zhu,M.,Li,J.,Han,W.,Letu,H.,Ishimoto,H.,2020. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres.OPTICSEXPRESS28,25730–25749. https://doi.org/10.1364/OE.400130
57. Ma,R.,Letu,H.,Yang,K.,Wang,T.,Shi,Chong,Xu,J.,Shi,J.,Shi,Chunxiang,Chen,L.,2020. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING58,5304–5316. https://doi.org/10.1109/TGRS.2019.2963262
58. Peng,Z.,Letu,H.,Wang,T.,Shi,C.,Zhao,C.,Tana,G.,Zhao,N.,Dai,T.,Tang,R.,Shang,H.,Shi,J.,Chen,L.,2020. Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China.JOURNALOFQUANTITATIVESPECTROSCOPY &RADIATIVETRANSFER 240. https://doi.org/10.1016/j.jqsrt.2019.106672
59. Shang,H.,Letu,H.,Chen,L.,Riedi,J.,Ma,R.,Wei,L.,Labonnote,L.C.,Hioki,S.,Liu,C.,Wang,Z.,Wang,J.,2020. Cloud thermodynamic phase detection using a directional polarimetric camera (DPC).JOURNALOFQUANTITATIVESPECTROSCOPY &RADIATIVETRANSFER 253. https://doi.org/10.1016/j.jqsrt.2020.107179
60. Si,Y.,Chen,L.,Xiong,X.,Shi,S.,Husi,L.,Cai,K.,2020. Evaluation of the MISR fine resolution aerosol product using MODIS,MISR,and ground observations over China.ATMOSPHERICENVIRONMENT 223. https://doi.org/10.1016/j.atmosenv.2019.117229
61. Wang,T.,Shi,J.,Ma,Y.,Letu,H.,Li,X.,2020. All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST,column water vapor and cloud top temperature.ISPRSJOURNALOFPHOTOGRAMMETRYANDREMOTESENSING161,52–60. https://doi.org/10.1016/j.isprsjprs.2020.01.011
62. Zhang,M.,Teng,S.,Di,D.,Hu,X.,Letu,H.,Min,M.,Liu,C.,2020. Information Content of Ice Cloud Properties from Multi-Spectral,-Angle and -Polarization Observations.REMOTESENSING12. https://doi.org/10.3390/rs12162548
63. Zhao,C.,Yang,Y.,Fan,H.,Huang,J.,Fu,Y.,Zhang,X.,Kang,S.,Cong,Z.,Letu,H.,Menenti,M.,2020. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau.NATIONALSCIENCEREVIEW7,492+. https://doi.org/10.1093/nsr/nwz184
64. Bao,S.,Letu,H.,Zhao,J.,Shang,H.,Lei,Y.,Duan,A.,Chen,B.,Bao,Y.,He,J.,Wang,T.,Ji,D.,Tana,G.,Shi,J.,2019. Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003-2015 based on MODIS data.INTERNATIONALJOURNALOFCLIMATOLOGY 39,532–543. https://doi.org/10.1002/joc.5826
65. Dai,T.,Cheng,Y.,Suzuki,K.,Goto,D.,Kikuchi,M.,Schutgens,N.A.J.,Yoshida,M.,Zhang,P.,Husi,L.,Shi,G.,Nakajima,T.,2019. Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter.JOURNALOFADVANCESINMODELINGEARTHSYSTEMS11,680–711. https://doi.org/10.1029/2018MS001475
66. Khatri,P.,Iwabuchi,H.,Hayasaka,T.,Irie,H.,Takamura,T.,Yamazaki,A.,Damiani,A.,Letu,H.,Kai,Q.,2019. Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers.ATMOSPHERICMEASUREMENTTECHNIQUES 12,6037–6047. https://doi.org/10.5194/amt-12-6037-2019
67. Lai,R.,Teng,S.,Yi,B.,Letu,H.,Min,M.,Tang,S.,Liu,C.,2019. Comparison of Cloud Properties from Himawari-8 and FengYun-4A Geostationary Satellite Radiometers with MODIS Cloud Retrievals.REMOTESENSING11. https://doi.org/10.3390/rs11141703
68. Letu,H.,Nagao,T.M.,Nakajima,T.Y.,Riedi,J.,Ishimoto,H.,Baran,A.J.,Shang,H.,Sekiguchi,M.,Kikuchi,M.,2019. Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING57,3229–3239. https://doi.org/10.1109/TGRS.2018.2882803
69. Li,D.,Qin,K.,Wu,L.,Xu,J.,Letu,H.,Zou,B.,He,Q.,Li,Y.,2019. Evaluation of JAXA Himawari-8-AHI Level-3 Aerosol Products over Eastern China.ATMOSPHERE 10. https://doi.org/10.3390/atmos10040215
70. Nakajima,T.Y.,Ishida,H.,Nagao,T.M.,Hori,M.,Letu,H.,Higuchi,R.,Tamaru,N.,Imoto,N.,Yamazaki,A.,2019. Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products.PROGRESS IN EARTHANDPLANETARYSCIENCE6. https://doi.org/10.1186/s40645-019-0295-9
71. Shang,H.,Letu,H.,Breon,F.-M.,Riedi,J.,Ma,R.,Wang,Ziming,Nakajima,T.Y.,Wang,Zhongting,Chen,L.,2019a. An improved algorithm of cloud droplet size distribution from POLDER polarized measurements.REMOTESENSINGOFENVIRONMENT 228,61–74. https://doi.org/10.1016/j.rse.2019.04.013
72. Shang,H.,Letu,H.,Pan,X.,Wang,Z.,Ma,R.,Liu,C.,Dai,T.,Li,S.,Chen,L.,Chen,C.,Hu,Q.,2019b. Diurnal haze variations over the North China plain using measurements from Himawari-8/AHI.ATMOSPHERICENVIRONMENT 210,100–109. https://doi.org/10.1016/j.atmosenv.2019.04.036
73. Sun,Y.,Zhao,C.,Su,Y.,Ma,Z.,Li,J.,Letu,H.,Yang,Y.,Fan,H.,2019. Distinct Impacts of Light and Heavy Precipitation on PM2.5 Mass Concentration in Beijing. EARTH ANDSPACESCIENCE6,1915–1925. https://doi.org/10.1029/2019EA000717
74. Wang,J.,Liu,C.,Yao,B.,Min,M.,Letu,H.,Yin,Y.,Yung,Y.L.,2019. A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS).REMOTESENSINGOFENVIRONMENT 227,1–11. https://doi.org/10.1016/j.rse.2019.02.024
75. Wang,T.,Shi,J.,Letu,H.,Ma,Y.,Li,X.,Zheng,Y.,2019a. Detection and Removal of Clouds and Associated Shadows in Satellite Imagery Based on Simulated Radiance Fields.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 124,7207–7225. https://doi.org/10.1029/2018JD029960
76. Wang,T.,Shi,J.,Ma,Y.,Husi,L.,Comyn-Platt,E.,Ji,D.,Zhao,T.,Xiong,C.,2019b. Recovering Land Surface Temperature Under Cloudy Skies Considering the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 124,3401–3416. https://doi.org/10.1029/2018JD028976
77. Wu,X.,Zhang,L.,Zhao,C.,Gegen,T.,Zheng,C.,Shi,X.,Geng,J.,Letu,H.,2019. Satellite-Based Assessment of Local Environment Change by Wind Farms in China. EARTH ANDSPACESCIENCE6,947–958. https://doi.org/10.1029/2019EA000628
78. Yu,Y.,Shi,J.,Wang,T.,Letu,H.,Yuan,P.,Zhou,W.,Hu,L.,2019. Evaluation of the Himawari-8 Shortwave Downward Radiation (SWDR) Product and its Comparison With the CERES-SYN,MERRA-2,and ERA-Interim Datasets.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING12,519–532. https://doi.org/10.1109/JSTARS.2018.2851965
79. Zhao,C.,Chen,Y.,Li,J.,Letu,H.,Su,Y.,Chen,T.,Wu,X.,2019. Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations.INTERNATIONALJOURNALOFCLIMATOLOGY 39,2612–2629. https://doi.org/10.1002/joc.5975
80. Zhou,W.,Shi,J.C.,Wang,T.X.,Peng,B.,Husi,L.,Yu,Y.C.,Zhao,R.,2019. New Methods for Deriving Clear-Sky Surface Longwave Downward Radiation Based on Remotely Sensed Data and Ground Measurements. EARTH ANDSPACESCIENCE6,2071–2086. https://doi.org/10.1029/2019EA000754
81. Han,X.,Tana,G.,Qin,K.,Letu,H.,2018.ESTIMATINGINDUSTRIALSTRUCTURECHANGESIN CHINA USING DMSP - OLS NIGHT-TIME LIGHT DATA DURING 1999-2012,in: Wu,L.,Cohen,J.,Loyola,D.,Letu,H,Qin,K (Eds.),2018ISPRSWORKSHOP ONREMOTESENSINGANDSYNERGICANALYSISONATMOSPHERICENVIRONMENT,International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Int Soc Photogrammetry & Remote Sensing,pp. 9–15. https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018
82. Nakajima,T.Y.,Takenaka,H.,Nagao,T.M.,Letu,H.,2018. Synergistic use of next-generation geostationary and polar orbit satellites for investigating aerosols,clouds,and radiation,in: Im,E.,Yang,S. (Eds.),REMOTESENSINGOFTHEATMOSPHERE,CLOUDS,ANDPRECIPITATION VII,Proceedings of SPIE. SPIE;Natl Aeronaut & Space Adm;Chinese Acad Sci,Inst Remote Sensing & Digital Earth;Chinese Acad Sci,State Key Lab Remote Sensing Sci;Minist Earth Sci. https://doi.org/10.1117/12.2323564
83. Qin,K.,Wang,L.,Xu,J.,Letu,H.,Zhang,K.,Li,D.,Zou,J.,Fan,W.,2018. Haze Optical Properties from Long-Term Ground-Based Remote Sensing over Beijing and Xuzhou,China.REMOTESENSING10. https://doi.org/10.3390/rs10040518
84. Shang,H.,Letu,H.,Nakajima,T.Y.,Wang,Z.,Ma,R.,Wang,T.,Lei,Y.,Ji,D.,Li,S.,Shi,J.,2018a. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.SCIENTIFICREPORTS8. https://doi.org/10.1038/s41598-018-19431-w
85. Shang,H.,Letu,H.,Peng,Z.,Wang,Z.,2018b.DEVELOPMENT OFADAYTIMECLOUDANDAEROSOLLOADINGSDETECTIONALGORITHMFORHIMAWARI-8 SA℡LITEMEASUREMENTS OVER DESERT,in: Wu,L.,Cohen,J.,Loyola,D.,Letu,H,Qin,K. (Eds.),2018ISPRSWORKSHOP ONREMOTESENSINGANDSYNERGICANALYSISONATMOSPHERICENVIRONMENT,International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Int Soc Photogrammetry & Remote Sensing,pp. 61–66. https://doi.org/10.5194/isprs-archives-XLII-3-W5-61-2018
86. Shi,H.,Li,W.,Fan,X.,Zhang,J.,Hu,B.,Husi,L.,Shang,H.,Han,X.,Song,Z.,Zhang,Y.,Wang,S.,Chen,H.,Xia,X.,2018. First assessment of surface solar irradiance derived from Himawari-8 across China. SOLAR ENERGY 174,164–170. https://doi.org/10.1016/j.solener.2018.09.015
87. Shi,S.,Cheng,T.,Gu,X.,Letu,H.,Guo,H.,Chen,H.,Wang,Y.,Wu,Y.,2018. Synergistic Retrieval of Multitemporal Aerosol Optical Depth Over North China Plain Using Geostationary Satellite Data of Himawari-8.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 123,5525–5537. https://doi.org/10.1029/2017JD027963
88. Wang,J.,Liu,C.,Min,M.,Hu,X.,Lu,Q.,Husi,L.,2018. Effects and Applications of Satellite Radiometer 2.25-μm Channel on Cloud Property Retrievals.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING56,5207–5216. https://doi.org/10.1109/TGRS.2018.2812082
89. Wang,T.,Shi,J.,Yu,Y.,Husi,L.,Gao,B.,Zhou,W.,Ji,D.,Zhao,T.,Xiong,C.,Chen,L.,2018. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements.REMOTESENSINGOFENVIRONMENT 205,100–111. https://doi.org/10.1016/j.rse.2017.11.011
90. Ji,D.-B.,Shi,J.-C.,Letu,H.,Wang,T.-X.,Zhao,T.-J.,2017. Atmospheric Effect Analysis and Correction of the Microwave Vegetation Index.REMOTESENSING9. https://doi.org/10.3390/rs9060606
91. Qin,K.,Wang,L.,Wu,L.,Xu,J.,Rao,L.,Letu,H.,Shi,T.,Wang,R.,2017. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang,China.ATMOSPHERICRESEARCH 198,113–122. https://doi.org/10.1016/j.atmosres.2017.08.018
92. Shang,H.,Chen,L.,Letu,H.,Zhao,M.,Li,S.,Bao,S.,2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 122,3528–3543. https://doi.org/10.1002/2016JD025659
93. Si,Y.,Li,S.,Chen,L.,Shang,H.,Wang,L.,Letu,H.,2017. Assessment and Improvement of MISR Angstrom Exponent and Single-Scattering Albedo Products UsingAERONETData in China.REMOTESENSING9. https://doi.org/10.3390/rs9070693
94. Wang,T.,Shi,J.,Husi,L.,Zhao,T.,Ji,D.,Xiong,C.,Gao,B.,2017a. Effect of Solar-Cloud-Satellite Geometry on Land Surface Shortwave Radiation Derived from Remotely Sensed Data.REMOTESENSING9. https://doi.org/10.3390/rs9070690
95. Wang,T.,Shi,J.,Husi,L.,Zhao,T.,Ji,D.,Xiong,C.,Ma,Y.,Zhou,W.,Yu,Y.,Zhao,R.,2017b.NEWPROGRESSINDERIVING CLOUDY-SKYLANDSURFACELONGWAVERADIATIONBASEDONMULTIPLE REMO℡Y SENSED DATA,in: 2017IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Institute of Elect & Electron Engineers Geoscience & Remote Sensing Soc;IEEE;IEEE GRSS,pp. 4681–4683.
96. Khatri,P.,Irie,H.,Takamura,T.,Letu,H.,2016.OPTICALCHARACTERISTICSOFAEROSOLS ANDCLOUDSSTUDIEDBY USING GROUND-BASED SKYNET AND SA℡LITEREMOTESENSINGDATA,in: 2016IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Inst Elect & Elect Engineers;Inst Elect & Elect Engineers,Geoscience & Remote Sensing Soc;NSSC,pp. 377–380. https://doi.org/10.1109/IGARSS.2016.7729092
97. Letu,H.,Ishimoto,H.,Riedi,J.,Nakajima,T.Y.,Labonnote,L.C.,Baran,A.J.,Nagao,T.M.,Sekiguchi,M.,2016. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission.ATMOSPHERICCHEMISTRYANDPHYSICS16,12287–12303. https://doi.org/10.5194/acp-16-12287-2016
98. Li,S.,Chen,L.,Fan,M.,Tao,J.,Wang,Z.,Yu,C.,Si,Y.,Letu,H.,Liu,Y.,2016a. Estimation of GEOS-Chem and GOCART Simulated Aerosol Profiles UsingCALIPSOObservations over the Contiguous United States.AEROSOLANDAIRQUALITYRESEARCH 16,3256–3265. https://doi.org/10.4209/aaqr.2015.03.0173
99. Li,S.,Yu,C.,Chen,L.,Tao,J.,Letu,H.,Ge,W.,Si,Y.,Liu,Y.,2016b. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China.ATMOSPHERICENVIRONMENT 141,320–332. https://doi.org/10.1016/j.atmosenv.2016.06.075
100. Qin,K.,Wu,L.,Wong,M.S.,Letu,H.,Hu,M.,Lang,H.,Sheng,S.,Teng,J.,Xiao,X.,Yuan,L.,2016. Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based Lidar andCALIPSOsatellite.ATMOSPHERICENVIRONMENT 141,20–29. https://doi.org/10.1016/j.atmosenv.2016.06.042
101. Shang,H.,Chen,L.,Letu,H.,Li,S.,Jia,S.,Wang,Y.,2016. THE EFFECT OFCLOUDOPTICALTHICKNESS,GROUNDSURFACEALBEDO AND ABOVE-CLOUDABSORBINGDUST LAYER ONTHECLOUDBOWSTRUCTURE,in: 2016IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Inst Elect & Elect Engineers;Inst Elect & Elect Engineers,Geoscience & Remote Sensing Soc;NSSC,pp. 2174–2176. https://doi.org/10.1109/IGARSS.2016.7729561
102. Husltu,Yu-hai,B.,Jian,X.,Song,Q.,Gang,B.,2015. Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models.SPECTROSCOPYANDSPECTRALANALYSIS 35,1165–1168. https://doi.org/10.3964/j.issn.1000-0593(2015)05-1165-04
103. Letu,H.,Hara,M.,Tana,G.,Bao,Y.,Nishio,F.,2015. Generating the Nighttime Light of the Human Settlements by Identifying Periodic Components from DMSP/OLS Satellite Imagery.ENVIRONMENTALSCIENCE&TECHNOLOGY 49,10503–10509. https://doi.org/10.1021/acs.est.5b02471
104. Shang,H.,Chen,L.,Breon,F.M.,Letu,H.,Li,S.,Wang,Z.,Su,L.,2015. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument.ATMOSPHERICMEASUREMENTTECHNIQUES 8,4931–4945. https://doi.org/10.5194/amt-8-4931-2015
105. Letu,H.,Nagao,T.M.,Nakajima,T.Y.,Matsumae,Y.,2014a. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.APPLIEDOPTICS 53,7523–7533. https://doi.org/10.1364/AO.53.007523
106. Letu,H.,Nakajima,T.Y.,Nishio,F.,2014b. Regional-Scale Estimation of Electric Power and Power Plant CO2 Emissions Using Defense Meteorological Satellite Program Operational Linescan System Nighttime Satellite Data.ENVIRONMENTALSCIENCE&TECHNOLOGYLETTERS1,259–265. https://doi.org/10.1021/ez500093s
107. Letu,H.,Nakajima,T.Y.,Matsui,T.N.,Matsumae,Y.,2013. Optimizing the Ice Crystal Scattering Database for the GCOM-C/SGLI Satellite Mission,in: Cahalan,R.,Fischer,J. (Eds.),RADIATIONPROCESSES INTHEATMOSPHERE AND OCEAN (IRS2012),AIP Conference Proceedings. Karlsruhe Inst Technol (KIT);Leibniz Inst Tropospher Res (IFT);German Aerosp Ctr (DLR);European Space Agcy (ESA);German Weather Serv (DWD);European Org Exploitat Meteorol Satellites (EUMETSAT);IAMAS,IRC,pp. 188–191. https://doi.org/10.1063/1.4804738
108. Tana,G.,Letu,H.,Cheng,Z.,Tateishi,R.,2013. Wetlands Mapping in North America by Decision Rule Classification Using MODIS and Ancillary Data.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING6,2391–2401. https://doi.org/10.1109/JSTARS.2013.2249499
109. Letu,H.,Bao,Y.,Tana,G.,Hara,M.,Nishio,F.,2012a. Relationship between DMSP/OLS nighttime light and CO2 emission from electric power plant,in: Entekhab,D.,Honda,Y.,Sawada,H.,Shi,J.,Oki,T. (Eds.),LANDSURFACEREMOTESENSING,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci. https://doi.org/10.1117/12.977290
110. Letu,H.,Hara,M.,Tana,G.,Nishio,F.,2012b. A Saturated Light Correction Method for DMSP/OLS Nighttime Satellite Imagery.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING50,389–396. https://doi.org/10.1109/TGRS.2011.2178031
111. Nakajima,T.Y.,Nagao,T.M.,Letu,H.,Ishida,H.,Suzuki,K.,2012. On the cloud observations in JAXA’s next coming satellite missions,in: Hayasaka,T.,Nakamura,K.,Im,E. (Eds.),REMOTESENSINGOFTHEATMOSPHERE,CLOUDS,ANDPRECIPITATION IV,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci;Natl Inst Informat & Commun Technol. https://doi.org/10.1117/12.977250
112. Tana,G.,Letu,H.,Ryutaro,T.,2012. Validation of the wetlands map derived from MODIS imagery in North America,in: Entekhab,D.,Honda,Y.,Sawada,H.,Shi,J.,Oki,T. (Eds.),LANDSURFACEREMOTESENSING,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci. https://doi.org/10.1117/12.977222
113. Letu,H.,Nakajima,T.Y.,Matsui,T.N.,2011a.DEVELOPMENT OF THEICECRYSTALSCATTERINGDATABASEFOR GCOM-C/SGLI,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 3225–3228. https://doi.org/10.1109/IGARSS.2011.6049906
114. Letu,H.,Tana,G.,Hara,M.,Nishio,F.,2011b.MONITORINGTHEELECTRICPOWERCONSUMPTIONBYLIGHTING FROM DMSP/OLSNIGHTTIME SA℡LITEIMAGERY,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 2113–2116.
115. Matsui,T.N.,Suzuki,K.,Nakajima,T.Y.,Letu,H.,2011.INTERPRETATIONOF MULTI-WAVELENGTH-RETRIEVEDCLOUDDROPLETEFFECTIVERADII IN TERMS OFCLOUDVERTICALINHOMOGENEITY USINGASPECTRAL-BINMICROPHYSICS CLOUD MODEL ANDTHERADIATIVETRANSFERCOMPUTATION,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 3229–3232. https://doi.org/10.1109/IGARSS.2011.6049907
116. Letu,H.,Hara,M.,Yagi,H.,Naoki,K.,Tana,G.,Nishio,F.,Shuhei,O.,2010. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects.INTERNATIONALJOURNALOFREMOTESENSING31,4443–4458. https://doi.org/10.1080/01431160903277464
117. Nakajima,T. Y.,Kuji,M.,Sano,I.,Schutgens,N.,Mano,Y.,Riedi,J.,Ishida,H.,Suzuki,K.,Okamoto,H.,Matsui,T.,Letu,H.,2010.OBSERVATIONS OF CLOUDANDAEROSOLFROMGCOM-C SGLI,in: Kajiwara,K.,Muramatsu,K.,Soyama,N.,Endo,T.,Ono,A.,Akatsuka,S. (Eds.),NETWORKING THE WORLD WITHREMOTESENSING,International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences. ISPRS Tech Commiss,pp. 30–34.
118. Nakajima,Takashi Y.,Matsui,T.N.,Letu,H.,Suzuki,K.,Ishida,H.,Kikuchi,N.,Stephens,G.L.,Nakajima,T.,Shimoda,H.,2010. Cloud sciences using satellite remote sensing,cloud growth model,and radiative transfer,in: Mukai,S.,Frouin,R.,Sohn,B. (Eds.),REMOTESENSINGOFTHEATMOSPHERE AND CLOUDS III,Proceedings of SPIE. SPIE;Korea Ocean Res & Dev Inst;Korea Ocean Satellite Ctr;Incheon Tourism Org;Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Sci Technol Corp;Indian Space Res Org;Indian Natl Ctr Ocean Informat Serv. https://doi.org/10.1117/12.869436
119. Tana,G.,Letu,H.,Erdenee,B.,Tateishi,R.,2010.COMPARISONOFNEEDLELEAFDECIDUOUSFORESTANDNEEDLELEAFEVERGREEN FOREST IN THE GLCNMO WITHIGBPDISCOVERANDGLC2000PRODUCT,in: 2010IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM,IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE,pp. 343–346. https://doi.org/10.1109/IGARSS.2010.5651660
120. Letu,H.,Hara,M.,Yagi,H.,Tana,G.,Nishio,F.,2009. Estimating the energy consumption with nighttime city light from the DMSP/OLS imagery,in: 2009 JOINT URBANREMOTESENSINGEVENT,VOLS 1-3. Int Soc Photogrammetry & Remote Sensing;IEEE Geosci & Remote Sensing Soc;Shanghai Assoc Sci & Technol,p. 1364.