邬明权
性别:男
职称:副研究员
电话:010-64889561
邮箱:wumq@aircas.ac.cn
地址:北京市朝阳区大屯路甲20号北中科院空天信息创新研究院奥运村园区
邬明权,博士,副研究员,硕导。中国科学院空天信息创新研究院,遥感科学国家重点实验室。中国科学院青年创新促进会会员,中国科学院空天信息创新研究院青年创新促进会理事,“一带一路”青年科学家论坛理事。生态环境部生态环保大数据服务平台和环保技术国际智汇平台专家,中宣部咨询专家,被相关部门采用专报十余份,部分获领导人批阅。
主要从事“一带一路”重大工程遥感、多源遥感数据时空融合和农业遥感等研究。
主持中科院A类先导专项子课题、国家自然基金、高分专项课题、863子课题、科技支撑项目子课题和国家科技进步奖中科院奖励项目等20余项,参与973、省院合作和各部委项目9项;获2019年发改委优秀研究成果一等奖、2012年国家统计局机关统计科研优秀成果奖三等奖(排名第三),2012年获得国家科技进步奖二等奖(二级证书,排名第一);两次被评为中科院遥感所优秀职工。
国家自然科学基金等项目评议专家;Remote Sensing of Environment, Remote sensing, IEEE Trans. on Geoscience and Remote Sensing, Sensors, The Science of the Total Environment, Computers and Electronics in Agriculture, International Journal of Digital Earth, International Journal of Remote Sensing, Geocarto International, Agricultural science,遥感学报,农业工程学报,地球信息科学学报等杂志审稿专家。
教育经历:
2011.9-2013.7 中国科学院遥感与数字地球研究所,地图学与地理信息系统,理学博士,导师牛铮研究员
2007.7-2009.7中国科学院遥感应用研究所,联合培养硕士,导师牛铮研究员、王长耀研究员
2006.9-2009.7太原理工大学,地图制图学与地理信息工程,工学硕士,导师乔玉良教授
2002.9-2006.7重庆交通大学,测绘工程专业,工学学士
研究工作经历:
2016.03-至今,中国科学院遥感与数字地球研究所/中国科学院空天信息创新研究院,“一带一路”重大工程遥感、时空融合与农业遥感,副研究员
2016.06-2016.12,美国农业部南部平原农业研究中心,航空遥感,访问学者
2011.03-2016.02,中国科学院遥感与数字地球研究所,多传感器信息融合与农业遥感,助理研究员
2009.07-2011.02,中国科学院遥感与数字地球研究所,多传感器信息融合与农业遥感,研究员实习员
[1].可持续发展大数据国际研究中心, 可持续发展大数据国际研究中心SDG报告子课题, CBAS2024SDG003, 地球大数据支撑经济适用的清洁能源可持续发展目标研究, 2024-01 至 2024-12, 139万元, 在研, 主持
[2]..可持续发展大数据国际研究中心, 可持续发展大数据国际研究中心SDG报告子课题, CBAS2023SDG003,地球大数据支撑经济适用的清洁能源可持续发展目标研究, 2023-01 至 2023-12, 65万元, 结题, 主持
[3].中科院A类先导专项地球大数据支撑清洁能源及其他可持续发展目标研究,2022.01-2022.12,244.18万,负责人;
[4].多尺度高分辨率资源环境数据处理及分析,2022.01-2022.12,30万,负责人;
[5].生态状况评价指数数据集,2021.01-2025.12,15万,负责人;
[6].综合集成与“一带一路”建设空间路线图,2020-2021,8万元,负责人;
[7].中国科学院青年创新促进会,2017.01-2021.12,80万元,负责人;
[8].典型地区高分辨率遥感数据处理,2020-2022,10万,负责人;
[9].中科院A类先导专项“一带一路重大工程生态环境影响”,2018-2022,650万,第2负责人。
[10].国家遥感中心全球生态环境遥感监测报告2018年年报“重大工程生态环境影响遥感监测”,2018-2019,105万,负责人;
[11].国家自然科学基金项目“非线性多源遥感数据时空融合模型研究”(41301390), 2014.01-2016.12,25万元;
[12].新疆棉花面积遥感调查,新疆统计局,2009-2015,150万,骨干;
云南省科技创新强省计划(省院省校科技合作专项)“基于高分辨率卫星影像与无人机影像的昆明新国际机场遥感动态监测研究”,2009-2011,230万,骨干。
[1].牛铮,陈方,邬明权。绿色“一带一路”建设,2019年,发改委优秀研究成果一等奖。
[2].邬明权,王力、高帅、占玉林、杜子涛。主要农作物遥感监测关键技术研究及业务化应用。国家科技进步奖二等奖,2012.(二级证书)。
[3].王长耀,王力,邬明权。基于遥感技术与空间格网抽样相结合的新疆棉花种植面积调查方法,国家统计局,机关统计科研优秀成果奖,三等奖,2012。
[4].2017年入选中国科学院青年创新促进会。
[5].2015年入选中国科学院遥感与数字地球研究所青年促进会。
[6].2012年当选中国科学院遥感与数字地球研究所优秀职工。
[7].2015年当选中国科学院遥感与数字地球研究所优秀职工。
[8].2015年获得国家留学基金委国家公派高级访问学者及访问学者项目资助。
学术论文
1.Wang, Y.; Wu, M.; Niu, Z. Spatialisation of Electricity Consumption in China Based on Nighttime Light Remote Sensing from 2012 to 2023. Sensors 2025, 25, 1963. https://doi.org/10.3390/s25071963 (SCI,通讯)
2.Ou, S.; Wu, M.; Niu, Z.; Chen, F.; Liu, J.; Wang, M.; Tian, D. Remote Sensing Identification and Analysis of Global Building Electrification (2012–2023). Remote Sens. 2025, 17, 777. https://doi.org/10.3390/rs17050777(SCI,通讯)
3.Li, W.; Wu, M.; Niu, Z. Spatialization and Analysis of China’s GDP Based on NPP/VIIRS Data from 2013 to 2023. Appl. Sci. 2024, 14, 8599. https://doi.org/10.3390/app14198599. (SCI,通讯)
4.Ye, H.; Wang, H.; Nie, C.; Wang, J.; Huang, W.; Teng, L.; Wu, M.* Measurement Indicators and an Evaluation Approach for Assessing the Sustainable Development Capacity of Tropical Agriculture: A Case Study for Hainan Province, China. Sustainability 2023, 15, 8778. https://doi.org/10.3390/su15118778. (SCI,通讯)
5.Gao, X.; Wu, M.*; Niu, Z.; Chen, F. Global Identification of Unelectrified Built-Up Areas by Remote Sensing. Remote Sens. 2022, 14, 1941. https://doi.org/10.3390/rs14081941(SCI) (SCI,通讯)
6.Gao, X.; Wu, M.*; Gao, J.; Han, L.; Niu, Z.; Chen, F. Modelling Electricity Consumption in Cambodia Based on Remote Sensing Night-Light Images. Appl. Sci. 2022, 12, 3971. https://doi.org/10.3390/app12083971. (SCI,通讯)
7.Xumiao Gao, Mingquan Wu*, Chao Li, Zheng Niu, Fang Chen & Wenjiang Huang (2022) Influence of China’s Overseas power stations on the electricity status of their host countries, International Journal of Digital Earth, 15:1, 416-436, DOI: 10.1080/17538947.2022.2038292 (SCI,通讯)
8.Wu, M.; Ye, H.; Niu, Z.; Huang, W.; Hao, P.; Li, W.; Yu, B. Operation Status Comparison Monitoring of China’s Southeast Asian Industrial Parks before and after COVID-19 Using Nighttime Lights Data. ISPRS Int. J. Geo-Inf. 2022, 11, 122. https://doi.org/10.3390/ijgi11020122 (SCI,一作)
9.Zhao, Y.; Li, R.; Wu, M. Correlation studies between land cover change and baidu index: A case study of hubei province. ISPRS International Journal of Geo-Information 2020, 9, 232. (SCI,通讯)
10.Jia, Z.; Wu, M.; Niu, Z.; Tang, B.; Mu, Y. Monitoring of un sustainable development goal sdg-9.1. 1: Study of algerian “belt and road” expressways constructed by china. PeerJ 2020, 8, e8953. (SCI,通讯)
11.Dong, X.; Chen, Z.; Wu, M.; Hu, C. Long time series of remote sensing to monitor the transformation research of kubuqi desert in china. EARTH SCIENCE INFORMATICS 2020. (SCI,通讯)
12.Tian, H.; Meng, M.; Wu, M.; Niu, Z. Mapping spring canola and spring wheat using radarsat-2 and landsat-8 images with google earth engine. Curr. Sci 2019, 116, 291-298. (SCI,通讯)
13.Li, H.; Wu, M.; Tian, D.; Wu, L.; Niu, Z. Monitoring and analysis of the expansion of the ajmr port, davao city, philippines using multi-source remote sensing data. PeerJ 2019, 7, e7512. (SCI,通讯)
14.Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Monitoring cotton root rot by synthetic sentinel-2 NDVI time series using improved spatial and temporal data fusion. Scientific reports 2018, 8, 1-12. (SCI,一作)
15.Wu, M.; Peng, D.; Qin, Y.; Niu, Z.; Yang, C.; Li, W.; Hao, P.; Zhang, C. An index of non-sampling error in area frame sampling based on remote sensing data. PeerJ 2018, 6, e5824. (SCI,一作)
16.Wu, M.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Validation of synthetic daily landsat ndvi time series data generated by the improved spatial and temporal data fusion approach. Information Fusion 2018, 40, 34-44. (SCI, top期刊,IF:14.7)
17.Tian, H.; Wu, M.; Wang, L.; Niu, Z. Mapping early, middle and late rice extent using sentinel-1a and landsat-8 data in the poyang lake plain, china. Sensors 2018, 18, 185. (SCI,通讯)
18.Peng, D.; Zhang, H.; Yu, L.; Wu, M.; Wang, F.; Huang, W.; Liu, L.; Sun, R.; Li, C.; Wang, D. Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. International Journal of Remote Sensing 2018, 39, 8022-8040. (SCI,通讯)
19.Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W. Evaluation of orthomosics and digital surface models derived from aerial imagery for crop type mapping. Remote Sensing 2017, 9, 239. (SCI,一作)
20.Wu, M.; Huang, W.; Niu, Z.; Wang, Y.; Wang, C.; Li, W.; Hao, P.; Yu, B. Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas. Computers and Electronics in Agriculture 2017, 139, 1-9. (SCI,一作,1区TOP)
21.Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic monitoring of the largest freshwater lake in china using a new water index derived from high spatiotemporal resolution sentinel-1a data. Remote Sensing 2017, 9, 521. (SCI,通讯)
22.Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. An improved high spatial and temporal data fusion approach for combining landsat and modis data to generate daily synthetic landsat imagery. Information fusion 2016, 31, 14-25. (SCI, top期刊,IF:13.699)
23.Qiao, H.; Wu, M.; Shakir, M.; Wang, L.; Kang, J.; Niu, Z. Classification of small-scale eucalyptus plantations based on ndvi time series obtained from multiple high-resolution datasets. Remote sensing 2016, 8, 117. (SCI,通讯)
24.Wu, M.; Zhang, X.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring. Remote Sensing 2015, 7, 16293-16314. (SCI,一作)
25.Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C. High-resolution leaf area index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. Computers and electronics in agriculture 2015, 115, 1-11. (SCI,一作,1区TOP)
26.Wu, M.; Muhammad, S.; Chen, F.; Niu, Z.; Wang, C. Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in east china. Environmental Science: Processes & Impacts 2015, 17, 753-762. (SCI,一作)
27.Wu, M.; Li, H.; Huang, W.; Niu, Z.; Wang, C. Generating daily high spatial land surface temperatures by combining aster and modis land surface temperature products for environmental process monitoring. Environmental Science: Processes & Impacts 2015, 17, 1396-1404. (SCI,一作)
28.Wu, M.; Huang, W.; Niu, Z.; Wang, C. Generating daily synthetic landsat imagery by combining landsat and modis data. Sensors 2015, 15, 24002-24025. (SCI,一作)
29.Wu, M.; Huang, W.; Niu, Z.; Wang, C. Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring. International journal of environmental research and public health 2015, 12, 9920-9937. (SCI,一作)
30.Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of modis and landsat time series data to generate high-resolution temporal synthetic landsat data using a spatial and temporal reflectance fusion model. Journal of Applied Remote Sensing 2012, 6, 063507. (SCI,一作)
31.邬明权; 王洁; 牛铮; 赵永清; 王长耀. 融合 modis 与 landsat 数据生成高时间分辨率 landsat 数据. 2012. (SCI,一作)
32.J. Bai et al., "Toward an Advanced Method for Full-Waveform Hyperspectral LiDAR Data Processing," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-16, 2024, Art no. 5702516, doi: 10.1109/TGRS.2024.3382481. SCI
33.Ma, C., Li, T., Sui, X. et al. Annual dynamics of global remote industrial heat sources dataset from 2012 to 2021. Sci Data 11, 631 (2024). https://doi.org/10.1038/s41597-024-03461-3. SCI
34.J. Pan et al., "Calculation of the Proportion of Population Using Clean Cooking Fuel and Technology Based on Earth Big Data: A Case Study in the South of the Yangtze River in China," in IEEE Access, vol. 11, pp. 138165-138175, 2023, doi: 10.1109/ACCESS.2023.3340252. SCI
35.Yin, Z., Chen, F., Dou, C., Wu, M., Niu, Z., Wang, L., & Xu, S. (2023). Identification of illumination source types using nighttime light images from SDGSAT-1. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2023.2297013. SCI
36.Jiang, Y.; Lin, W.; Wu, M.; Liu, K.; Yu, X.; Gao, J. Remote Sensing Monitoring of Ecological-Economic Impacts in the Belt and Road Initiatives Mining Project: A Case Study in Sino Iron and Taldybulak Levoberezhny. Remote Sens. 2022, 14, 3308. https://doi.org/10.3390/rs14143308. SCI
37.Teo HC, Campos-Arceiz A, Li BV, Wu M, Lechner AM (2020) Building a green Belt and Road: A systematic review and comparative assessment of the Chinese and English-language literature. PLoS ONE 15(9): e0239009. https://doi.org/10.1371/journal.pone.0239009. SCI
38.Xing, N.; Huang, W.; Xie, Q.; Shi, Y.; Ye, H.; Dong, Y.; Wu, M.; Sun, G.; Jiao, Q. A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sens. 2020, 12, 16. https://doi.org/10.3390/rs12010016. SCI
39.Zhao, Y.; Li, R.; Qiu, J.; Sun, X.; Gao, L.; Wu, M. Prediction of human brucellosis in china based on temperature and NDVI. International journal of environmental research and public health 2019, 16, 4289. (SCI)
40.Meng, M.; Huang, N.; Wu, M.; Pei, J.; Wang, J.; Niu, Z. Vegetation change in response to climate factors and human activities on the mongolian plateau. PeerJ 2019, 7, e7735. (SCI)
41.HAO, PY.; TANG, HJ.; CHEN, ZX.; Le, Y.; WU, MQ. High resolution crop intensity mapping using harmonized landsat-8 and sentinel-2 data. Journal of Integrative Agriculture 2019, 18, 2883-2897. (SCI)
42.Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Bao, W.; Wu, M.; Li, Q. Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2019, 12, 2159-2169. (SCI)
43.Hao, P.; Wu, M.; Niu, Z.; Wang, L.; Zhan, Y. Estimation of different data compositions for early-season crop type classification. PeerJ 2018, 6, e4834. (SCI)
44.Hao, P.; Tang, H.; Chen, Z.; Yu, L.; Wu, M. A sampling workflow based on unsupervised clusters and multi-temporal sample interpretation (UCMT) for cropland mapping. Remote Sensing Letters 2018, 9, 952-961. (SCI)
45.Yu, B.; Chen, F.; Muhammad, S.; Li, B.; Wang, L.; Wu, M. A simple but effective landslide detection method based on image saliency. Photogrammetric Engineering & Remote Sensing 2017, 83, 351-363. (SCI)
46.Yu, B.; Chen, F.; Li, B.; Wang, L.; Wu, M. Fire risk prediction using remote sensed products: A case of cambodia. Photogrammetric Engineering & Remote Sensing 2017, 83, 19-25. (SCI)
47.Song, X.; Yang, C.; Wu, M.; Zhao, C.; Yang, G.; Hoffmann, W.C.; Huang, W. Evaluation of sentinel-2a satellite imagery for mapping cotton root rot. Remote Sensing 2017, 9, 906. (SCI)
48.Li, W.; Niu, Z.; Sun, G.; Gao, S.; Wu, M. Deriving backscatter reflective factors from 32-channel full-waveform lidar data for the estimation of leaf biochemical contents. Optics Express 2016, 24, 4771-4785. (SCI)
49.Li, W.; Niu, Z.; Li, Z.; Wang, C.; Wu, M.; Muhammad, S. Upscaling coniferous forest above-ground biomass based on airborne lidar and satellite alos palsar data. APPRES 2016, 10, 046003. (SCI)
50.Li, W.; Niu, Z.; Li, J.; Chen, H.; Gao, S.; Wu, M.; Li, D. Generating pseudo large footprint waveforms from small footprint full-waveform airborne lidar data for the layered retrieval of lai in orchards. Optics express 2016, 24, 10142-10156. (SCI)
51.Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecological Indicators 2016, 67, 637-648. (SCI)
52.Jun, K.; Li, W.; Zheng, N.; Shuai, G.; Mingquan, W. A spatial and temporal fusion model using local spatial association analysis method. Remote Sensing Technology and Application 2016, 30, 1176-1181. (SCI)
53.Hao, P.; Wang, L.; Zhan, Y.; Wang, C.; Niu, Z.; Wu, M. Crop classification using crop knowledge of the previous-year: Case study in southwest kansas, USA. European Journal of Remote Sensing 2016, 49, 1061-1077. (SCI)
54.Wu, C.; Wang, L.; Niu, Z.; Gao, S.; Wu, M. Nondestructive estimation of canopy chlorophyll content using hyperion and landsat/tm images. International Journal of Remote Sensing 2010, 31, 2159-2167. SCI
专利:
[1]. 邬明权,王力.一种基于地块的作物品种高光谱识别方法[P].中国专利:ZL2010 1 0272569.5, 2014-04-16.
[2]. 邬明权,牛铮.一种多源遥感数据时空融合方法[P].中国专利:ZL2012 1 0570294.2, 2015-10-14.
[3]. 邬明权,牛铮.一种改进型多源遥感数据时空融合方法[P].中国专利: ZL2015 1 0099032.6, 2017-07-07.
[4]. 高帅; 孙刚;牛铮;王力;黄文江;邬明权;黄妮;占玉林。一种叶面积体密度测量装置与方法,201310499198.8。
[5]. 牛铮;孙刚;高帅;黄文江;王力;邬明权;黄妮;占玉林。一种高光谱全波形激光雷达遥感系统,专利申请号201310499238.9
[6]. 牛铮,孙刚,高帅,李旺,王力,黄文江,占玉林,邬明权。一种激光雷达脚印重叠扫描装置。申请号:201520809383.7
软件著作权:
[1].邬明权.遥感数据时空融合系统.中国科学院遥感与数字地球研究所.2014SR110732.2014-8-1
[2].邬明权.机载高光谱数据处理系统.中国科学院遥感与数字地球研究所.2015SR032658.2015-2-15.
[3].邬明权.农作物对地抽样调查系统.中国科学院遥感与数字地球研究所. 2015SR077482.2015-5-8.