back 返回列表

张淼

性别

职称副研究员

邮箱zhangmiao@aircas.ac.cn

地址北京市朝阳区大屯路甲20号北

张淼
简历

张淼,中国科学院空天信息创新研究院,副研究员。长期从事农情遥感与粮食安全研究,聚焦于耕地利用大数据监测和作物类型人工智能提取方法研究,主持构建了CropWatch云平台集成分析技术体系,发表论文100余篇,其中SCI 56篇(其中3篇ESI高被引论文),农业信息领域Top100全球高产作者;申请国家发明专利14项,已授权发明专利6项。2021年入选空天院“未来之星”人才计划,2022年入选中科院青促会。获得中国测绘科学技术进步奖一等奖;莫桑比克农情监测定制化云平台入选国际农业发展基金2020年度最佳农村解决方案、联合国南南合作成功案例。

教育经历:

2009-2014年,中国科学院遥感与数字地球研究所,地图学与地理信息系统,理学博士学位

2005-2009年,北京大学,地理信息系统,理学学士学位

工作经历:

2025-01至今,中国科学院空天信息创新研究院,遥感与数字地球全国重点实验室,副研究员

2020-03至2024-12,中国科学院空天信息创新研究院,遥感科学国家重点实验室,副研究员

2019-01至2020-02,中国科学院遥感与数字地球研究所,遥感科学国家重点实验室, 副研究员

2017-03至2018-12,中国科学院遥感与数字地球研究所,数字地球院重点实验室,副研究员

2014-07至2017-02,中国科学院遥感与数字地球研究所,数字地球院重点实验室,助理研究员

专业机构兼职:

(1) 地球观测组织全球农业监测旗舰计划(GEOGLAM)执行委员会委员

(2) GEOGLAM全球农业监测联合试验(JECAM)国际合作计划共同主席

(3) 地球观测组织开普敦部长级峰会工作组成员、开普敦部长级宣言起草作者

(4) 中国农学会农业信息分会副主任委员

(5) 国际数字地球学会中国国家委员会数字农业专业委员会秘书长、委员

(6) 中国遥感应用协会定量遥感专业委员会第一届委员会青年委员


icon
研究方向

1、耕地利用遥感

2、农业遥感与粮食安全


icon
承担科研项目情况

2025-2029:国家自然科学基金国际合作重点基金“赞比西流域世界级粮仓潜力评估与水-能源-生态的互馈机制”,课题负责人;

2024-2025:中国-世界银行集团伙伴关系基金(CWPF)“Harnessing Data for Global Food Security- Capacity-Building Activities on CropWatch Cloud”,项目负责人;

2024-2027:国家自然科学基金委金砖框架国际合作基金“气候趋势与突发旱涝灾害对粮食安全的复合影响”,项目负责人;

2023-2028:国家重点研发计划“工厂化农业关键技术与智能农机装备”专项“粮食生产大数据平台研发与应用”项目“全国农情遥感监测关键技术与示范应用”,子课题负责人;

2022-2027:国家重点研发计划“工厂化农业关键技术与智能农机装备”专项“农情信息空天地一体化高效智能感知研究”,课题负责人;

2020-2022:澳大利亚研究理事会(Australian Research Council)Linkage Program “CropVision: A next-generation system for predicting crop production”,中方项目负责人;

2018-2022:中科院战略先导专项任务非洲大陆农用地资源监测,专题负责人;

2019-2023:国家自然科学基金国际合作重点基金“赞比西流域长时序高分辨率耕地遥感动态监测方法研究”,课题负责人;

2018-2020:国家自然科学基金青年科学基金项目“基于多角度遥感观测的作物苗情定量监测方法”,项目负责人;

2016-2020:国家自然科学基金国际合作重点基金“气候变化情景下赞比西流域农业开发对粮食和水资源短缺的影响”,课题负责人;

2016-2021:国家重点研发计划“全球变化及应对”专项“耕地利用强度与方式产品快速生成方法”,子课题负责人;

2016-2020:国家重点研发计划“粮食丰产增效科技创新”专项“基于卫星影像的稻麦产量和品质预测技术在安徽和江西的示范应用”,子课题负责人;

2017-2019:中国科学院国际合作局国际伙伴计划项目“全生育期作物单产预测方法研究”,项目负责人;

2017-2019:中国科学院科技服务网络计划“全国土地覆被数据独立验证”,课题负责人;

2014-2016:中国科学院科技服务网络计划项目“黑龙江粮食生产形势精准监测与服务”,课题负责人。


icon
获奖及荣誉

2023年,中国测绘科学技术奖一等奖,全球农情遥感监测关键技术与应用

2022年,中国信息协会,粮食数字化数技术研发十强

2020年,国际农业发展基金,最佳农村解决方案


icon
代表论著

[1] Zhao, H., Wu, B., Zhang, M.*, Long, J., Tian, F., Xie, Y., ... & Li, J. (2025). A large-scale VHR parcel dataset and a novel hierarchical semantic boundary-guided network for agricultural parcel delineation. ISPRS Journal of Photogrammetry and Remote Sensing, 221, 1-19.

[2] Zhang, M.; Bingfang Wu, et al. (2022). GCI30: a global dataset of 30-m cropping intensity using multisource remote sensing imagery, Earth System Science Data, 13(10), 4799-4817.

[3] Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., ... & Loupian, E. (2023). Challenges and opportunities in remote sensing-based crop monitoring: a review. National Science Review, 10(4), nwac290.

[4] Li, Y., Zeng, H., Zhang, M., Wu, B., Zhao, Y., Yao, X., ... & Wu, F. (2023). A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. International Journal of Applied Earth Observation and Geoinformation, 118, 103269.

[5] Wu, B., Tian, F., Zhang, M., Piao, S., Zeng, H., Zhu, W., ... & Lu, Y. (2022). Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 358, 131891.

[6] Zhao, Y., Potgieter, A. B., Zhang, M., Wu, B., & Hammer, G. L. (2020). Predicting wheat yield at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop modelling. Remote Sensing, 12(6), 1024.

[7] Bofana, J.; Zhang, M.*; Nabil, M.; et al. How long did crops survive from floods caused by Cyclone Idai in Mozambique detected with multi-satellite data. Remote Sensing of Environment, 2022, 269:112808.

[8] Liu, Chong, Qi Zhang, Shiqi Tao, …, Zhang, Miao*, et al. A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sensing of Environment, 2020, 251:112095.

[9] Mohsen Nabil, Miao Zhang*, José Bofana, et al. Assessing factors impacting the spatial discrepancy of remote sensing based cropland products: A case study in Africa. International Journal of Applied Earth Observation and Geoinformation 2020: 102010.

[10] Bofana, J.; Zhang, M.*; Nabil, M.; et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096.

[11] Xin Zhang, Miao Zhang, Yang Zheng et al. 2016. Crop Mapping Using Proba-V Time Series Data at the Yucheng and Hongxing Farm in China. Remote Sensing, 8(11), 915.

[12] Yang Zheng, Miao Zhang, Xin Zhang, et al. 2016. Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100-and 300-m S1 Products, Remote Sensing 8(10), 824.

[13] Zhang Miao, Wu Bingfang, Meng Jihua, 2014. Quantifying winter wheat residue biomass with a spectral angle index derived from China Environmental Satellite data. International Journal of Applied Earth Observation and Geoinformation, 2014,32: 105-113.

[14] Zhang Miao, Wu Bingfang, Yu Mingzhao, et al., 2014. Crop condition assessment with adjusted NDVI using uncropped arable land ratio, Remote Sensing, 6 (6), 5774-5794.

[15] Hu, Y., Zeng, H., Tian, F., Zhang, M., Wu, B., Gilliams, S., ... & Yang, H. (2022). An interannual transfer learning approach for crop classification in the Hetao Irrigation district, China. Remote Sensing, 14(5), 1208.

[16] Wu, B., Tian, F., Nabil, M., Bofana, J., Lu, Y., Elnashar, A., Zhang M. & Zhu, W. (2023). Mapping global maximum irrigation extent at 30m resolution using the irrigation performances under drought stress. Global Environmental Change, 79, 102652.

[17] Wu F , Wu B , Zhang M , et al. Identification of Crop Type in Crowdsourced Road View Photos with Deep Convolutional Neural Network[J]. Sensors, 2021, 21(4):1165.

[18] Zeng, H., Wu, B., Zhang, M., Zhang, N., Elnashar, A., Zhu, L., ... & Liu, W. (2021). Dryland ecosystem dynamic change and its drivers in Mediterranean region. Current Opinion in Environmental Sustainability, 48, 59-67.

[19] Tian, F., Wu, B., Zeng, H., ... Zhang M, et al. (2020). Identifying the Links Among Poverty, Hydroenergy and Water Use Using Data Mining Methods. Water Resources Management, 34(5), 1725-1741.

[20] Wu, B., Tian, F., Zhang, M., Zeng, H., & Zeng, Y. (2020). Cloud services with big data provide a solution for monitoring and tracking sustainable development goals. Geography and Sustainability, 1(1), 25-32.

[21] Mrinal Singha, Bingfang Wu, Miao Zhang, 2017. Object-based paddy rice mapping using HJ-1A/B data and temporal features extracted from time series MODIS NDVI data. Sensors, 17(1), 10, https://doi.org/10.3390/s17010010.

[22] M Singha, B Wu, M Zhang, 2016. An Object-Based Paddy Rice Classification Using Multi-Spectral Data and Crop Phenology in Assam, Northeast India, Remote Sensing 8(6), doi:10.3390/rs8060479.

[23] Y Zheng, B Wu, M Zhang, et al 2016. Crop Phenology Detection using High Spatial-Temporal Resolution Data Fused from SPOT5 and MODIS Products. Sensors 16(12), 2099; https://doi.org/10.3390/s16122099.

[24] Bingfang Wu, Rene Gommes, Miao Zhang, et al., 2015. Global Crop Monitoring: A Satellite-Based Hierarchical Approach, Remote Sensing 7 (4), 3907-3933.

[25] Xingzhi You, Jihua Meng, Miao Zhang, Bingfang Wu, 2013. Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method. Remote sensing, 5: 3190-3211.

[26] Meng Jihua, Wu Bingfang, Zhang Miao, 2013. Estimating regional winter wheat leaf N concentration with MERIS by integrating a field observation-based model and histogram matching. Transactions of the ASABE, 56(4): 1589-1598.

[27] Zhang, X., Wu, B., Ponce-Campos, G., Zhang, M., Chang, S., & Tian, F. 2018. Mapping up-to-date paddy rice extent at 10 m resolution in China through the integration of optical and synthetic aperture radar images. Remote Sensing, 10(8), 1200, ttps://doi.org/10.3390/rs10081200.

[28] Wu, B., Zeng, H., Yan, N. and Zhang, M., 2018. Approach for Estimating Available Consumable Water for Human Activities in a River Basin. Water Resources Management, 32(7), pp.2353-2368.

[29] F Waldner, D De Abelleyra, SR Verón, M Zhang, B Wu, et al., 2016. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity, International Journal of Remote Sensing 37(14), 3196-3231.

[30] Li, Q., Cao, X., Jia, K., Zhang, M., & Dong, Q. 2014. Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. International Journal of Remote Sensing, 35(16): 6076-6088. (SCI)

[31] Waldner, F., Schucknecht, A., Lesiv, M., ... Zhang M., et al., 2019. Conflation of expert and crowd reference data to validate global binary thematic maps. Remote sensing of environment, 221, 235-246.

[32] Defourny, P., Bontemps, S., Bellemans, N., ... Zhang M., et al., 2019. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote sensing of environment, 221, 551-568.

[33] Bingfang Wu, Jihua Meng, Qiangzi Li, Nana Yan, Xin Du, Miao Zhang, 2014. Remote sensing-based global crop monitoring: experiences with China’s CropWatch system. International Journal of Digital Earth, 7(2): 113-137. DOI: 10.1080/17538947.2013.821185.

[34] Brus, D. J., Boogaard, H., Ceccarelli, T., Orton, T. G., Traore, S., Zhang, M. 2018. Geostatistical disaggregation of polygon maps of average crop yields by area-to-point kriging. European Journal of Agronomy, 97, 48-59.

[35] Bingfang Wu, Miao Zhang, Hongwei Zeng, Guoshui Liu, Sheng Chang, René Gommes, 2014. New indicators for global crop monitoring in CropWatch-case study in North China Plain[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2014, 17(1): 012050.

[36] Huanxue Zhang, Qiangzi Li, Miao Zhang, 2014. The Effects of Spatial Resolution on the Maize acreage estimation by Remote Sensing[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 17(1): 012052.

[37] Cao, X., Li, Q., Du, X., Zhang, M., & Zheng, X. 2014. Exploring effect of segmentation scale on orient-based crop identification using HJ CCD data in Northeast China[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 17(1): 012047.

[38]Bingfang Wu, Zeng Hongwei, Yan Nana, Zhang Miao, et al., 2018. Promoting Resilient Agriculture Practices for B&R Countries with Remote Sensing, Bulletin of Chinese Academy of Sciences, 32(3): 184-189. 

icon

党群园地

copyright © 遥感与数字地球全国重点实验室 All rights reserved. 京ICP备05080539号-6