HUSI Letu
Professional Title:Professor
Phone:010-64889778
Email:huslt@aircas.ac.cn
Husi Letu earned his Bachelor of Science (B.S.) and Master of Science (M.S.) degrees in Geography from Inner Mongolia Normal University in Hohhot, China, in 1999 and 2002, respectively. He then went on to receive his Ph.D. in Geosciences and Remote Sensing from the Center for Environmental Remote Sensing (CEReS), Chiba University, Japan, in 2010. From 2010 to 2015, he worked in the Research and Information Center of Tokai University (Japan) as a postdoctoral and JAXA project researcher, working on the algorithm development and validation for the ice cloud product of JAXA’s GCOM-C and Himawari-8 satellite missions. In 2015, Dr. Letu joined the State Key Laboratory of Remote Sensing Science, Chinese Academy of Sciences (CAS), as a professor.
Dr. Letu has been focusing on atmospheric radiative transfer, remote sensing, simulation of the optical properties of nonspherical particles, and retrieval of ice cloud properties. Accurate estimation of cloud characteristics holds significant scientific importance in minimizing uncertainty in cloud radiative forcing, enhancing the precision of global radiation budget calculations, and deepening our understanding of cloud radiation and climate change mechanisms. In cloud remote sensing research, the primary focus lies on characterizing the parameters of ice and water clouds, along with detecting cloud cover and phase. Focusing on the international forefront of cloud remote sensing, Dr. Letu innovatively developed an ice cloud parameter retrieval algorithm based on an irregular ice crystal light scattering model, significantly enhancing the accuracy of estimating optical and microphysical properties of ice clouds. He has also developed a novel algorithm for retrieving water cloud characteristic parameters based on polarized multi-angle satellite observations, breaking through the bottleneck issue of significant overestimation of cloud droplet effective radius in mainstream international algorithms. Additionally, Dr. Letu proposed a simultaneous cloud and haze identification algorithm, addressing the issue of overestimation of cloud cover caused by satellite cloud detection mistakenly identifying haze as clouds in highly polluted regions. The aforementioned research findings have been successfully applied to surface radiation estimation and climate model simulations based on next-generation geostationary satellites. These have significantly reduced estimation errors in surface shortwave radiation and ice cloud radiative forcing, thereby fully demonstrating the advanced nature and high precision characteristics of the developed algorithms. At the same time, the new algorithm for the retrieval of ice cloud characteristics and water cloud parameters has been adopted by the official product algorithms of four international satellite programs (GCOM-C multispectral Polarization Observation polar-orbiting satellite and Himawari-8 next-generation geostationary satellite of Japan Aerospace Exploration Agency, EarthCARE and 3MI next generation scientific satellite of European Space Agency). The specially developed cloud characteristic retrieval algorithm modules for China's Fengyun-4 satellite and Gaofen-5 satellite have also been adopted by the Ministry of Ecology and Environment, the National Center for Artificial Weather Modification, the Atmospheric Detection Center, etc., for their operational systems. The irregular ice crystal light scattering model was adopted and applied by Earth System Model (CIESM) of Tsinghua University. Over the past five years, Dr. Letu has authored over 50 SCI papers, with more than 20 of them as the first author or corresponding author, and 3 papers recognized as highly cited in the Essential Science Indicators (ESI) database.
Education & Occupation
Inner Mongolia Normal University, China, Department of Geography
Bachelor of Science
Inner Mongolia Normal University, China, Department of Geography
Master of Science
Chiba University, Japan, School of Earth Life Science
Doctor of Science
Short-term visit to the Faculty of Education, Tottori University, Japan
National fee subsidy
Institute of Environmental Remote Sensing, Chiba University, Japan
Research Associate
Tokai University, Japan
Postdoctoral, Special Researcher
Aerospace Information Research Institute, Chinese Academy of Sciences, China
Professor
Atmospheric remote sensing; High-precision revieval of cloud characteristics
1. Chen,X.,Letu,H.,Shang,H.,Ri,X.,Tang,C.,Ji,D.,Shi,C.,Teng,Y.,2024. Rainfall Area Identification Algorithm Based on Himawari-8 Satellite Data and Analysis of its Spatiotemporal Characteristics.REMOTESENSING16. https://doi.org/10.3390/rs16050747
2. Shang,H.,Letu,H.,Xu,R.,Wei,L.,Wu,L.,Shao,J.,Nagao,T.M.,Nakajima,T.Y.,He,J.,Riedi,J.,Chen,L.,2024. A hybrid cloud detection and cloud phase classification algorithm using classic threshold-based tests and extra randomized tree model.REMOTESENSINGOFENVIRONMENT 302. https://doi.org/10.1016/j.rse.2023.113957
3. Sun,Q.,Ji,D.,Letu,H.,Ni,X.,Zhang,H.,Wang,Y.,Li,B.,Shi,J.,2024. A method for estimating high spatial resolution total precipitable water in all-weather condition by fusing satellite near-infrared and microwave observations.REMOTESENSINGOFENVIRONMENT 302. https://doi.org/10.1016/j.rse.2023.113952
4. Wang,W.,Shi,C.,Shang,H.,Yin,S.,Xu,J.,Xu,N.,Chen,L.,Letu,H.,2024. Development of an Algorithm for the Simultaneous Retrieval of Cloud-Top Height and Cloud Optical Thickness Combining Radiative Transfer and Multisource Satellite Information From O₄ Hyperspectral Measurements. IEEE Trans. Geosci. Remote Sensing 62,1–11. https://doi.org/10.1109/TGRS.2024.3385030
5. Wei,L.,Shang,H.,Xu,J.,Shi,C.,Tana,G.,Chao,K.,Bao,S.,Chen,L.,Letu,H.,2024. Cloud Top Pressure Retrieval Using Polarized and Oxygen A-band Measurements from GF5 andPARASOLSatellites.ADVANCESINATMOSPHERICSCIENCES41,680–700. https://doi.org/10.1007/s00376-023-2382-5
6. Xian,Y.,Wang,T.,Leng,W.,Letu,H.,Shi,J.,Wang,G.,Yan,X.,Yuan,H.,2024. Can Topographic Effects on Solar Radiation Be Ignored: Evidence From the Tibetan Plateau.GEOPHYSICALRESEARCHLETTERS51. https://doi.org/10.1029/2024GL108653
7. Zhang,T.,Letu,H.,Dai,T.,Shi,C.,Lei,Y.,Peng,Y.,Lin,Y.,Chen,L.,Shi,J.,Tian,W.,Shi,G.,2024. Estimating hourly surface shortwave radiation over northeast of the Tibetan Plateau by assimilating Himawari-8 cloud optical thickness.GEOSCIENCELETTERS11. https://doi.org/10.1186/s40562-023-00312-8
8. An,N.,Shang,H.,Lesi,W.,Ri,X.,Shi,C.,Tana,G.,Bao,Y.,Zheng,Z.,Xu,N.,Chen,L.,Zhang,P.,Ye,L.,Letu,H.,2023. A Cloud Detection Algorithm for Early Morning Observations From the FY-3E Satellite.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3304985
9. Chen,Y.,Yue,X.,Tian,C.,Letu,H.,Wang,L.,Zhou,H.,Zhao,Y.,Fu,W.,Zhao,X.,Peng,D.,Zhang,J.,2023. Assessment of solar energy potential in China using an ensemble of photovoltaic power models.SCIENCEOF THETOTALENVIRONMENT 877. https://doi.org/10.1016/j.scitotenv.2023.162979
10. Gao,X.,Pan,J.,Peng,Z.,Zhao,T.,Bai,Y.,Yang,J.,Jiang,L.,Shi,J.,Husi,L.,2023. Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations.REMOTESENSING15. https://doi.org/10.3390/rs15082065
11. Khatri,P.,Hayasaka,T.,Holben,B.N.,Singh,R.P.,Letu,H.,Tripathi,S.N.,2023. Increased aerosols can reverse Twomey effect in water clouds through radiative pathway (vol 12,20666,2022).SCIENTIFICREPORTS13. https://doi.org/10.1038/s41598-023-28028-x
12. Lei,Y.,Li,R.,Letu,H.,Shi,J.,2023. Seasonal Variations of Recharge-Storage-Runoff Process over the Tibetan Plateau.JOURNALOFHYDROMETEOROLOGY 24,1619–1633. https://doi.org/10.1175/JHM-D-23-0045.1
13. Leng,W.,Wang,T.,Wang,G.,Letu,H.,Wang,S.,Xian,Y.,Yan,X.,Zhang,Z.,2023. All-sky surface and top-of-atmosphere shortwave radiation components estimation: Surface shortwave radiation,PAR,UV radiation,and TOA albedo.REMOTESENSINGOFENVIRONMENT 298. https://doi.org/10.1016/j.rse.2023.113830
14. Letu,H.,Ma,R.,Nakajima,T.Y.,Shi,C.,Hashimoto,M.,Nagao,T.M.,Baran,A.J.,Nakajima,T.,Xu,J.,Wang,T.,Tana,G.,Bilige,S.,Shang,H.,Chen,L.,Ji,D.,Lei,Y.,Wei,L.,Zhang,P.,Li,J.,Li,L.,Zheng,Y.,Khatri,P.,Shi,J.,2023a. Surface Solar Radiation Compositions Observed from Himawari-8/9 and Series.BULLETIN OFTHEAMERICANMETEOROLOGICALSOCIETY104,E1772–E1789. https://doi.org/10.1175/BAMS-D-22-0154.1
15. Li,J.,Zhang,F.,Li,W.,Tong,X.,Pan,B.,Li,Jun,Lin,H.,Letu,H.,Mustafa,F.,2023. Transfer-Learning-Based Approach to Retrieve the Cloud Properties Using Diverse Remote Sensing Datasets.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3318374
16. Li,M.,Letu,H.,Ishimoto,H.,Li,S.,Liu,L.,Nakajima,T.Y.,Ji,D.,Shang,H.,Shi,C.,2023. Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models.ATMOSPHERICMEASUREMENTTECHNIQUES 16,331–353. https://doi.org/10.5194/amt-16-331-2023
17. Li,S.,Liu,L.,Letu,H.,Hu,S.,Dong,P.,Ren,H.,Ye,J.,2023. Evaluation of the impacts of ice cloud vertical inhomogeneity on spaceborne passive submillimeter-wave simulations.QUARTERLYJOURNALOF THEROYALMETEOROLOGICALSOCIETY149,1073–1089. https://doi.org/10.1002/qj.4457
18. Shang,H.,Hioki,S.,Penide,G.,Cornet,C.,Letu,H.,Riedi,J.,2023. Establishment of an analytical model for remote sensing of typicalstratocumulus cloud profiles under various precipitation and entrainmentconditions.ATMOSPHERICCHEMISTRYANDPHYSICS23,2729–2746. https://doi.org/10.5194/acp-23-2729-2023
19. Shao,J.,Letu,H.,Ri,X.,Tana,G.,Wang,T.,Shang,H.,2023. Estimation of Surface Downward Longwave Radiation and Cloud Base Height Based on Infrared Multichannel Data of Himawari-8.ATMOSPHERE 14. https://doi.org/10.3390/atmos14030493
20. Tan,Z.,Ma,S.,Liu,C.,Teng,S.,Letu,H.,Zhang,P.,Ai,W.,2023. Retrieving cloud base height from passive radiometer observations via a systematic effective cloud water content table.REMOTESENSINGOFENVIRONMENT 294. https://doi.org/10.1016/j.rse.2023.113633
21. Tana,G.,Ri,X.,Shi,C.,Ma,R.,Letu,H.,Xu,J.,Shi,J.,2023. Retrieval of cloud microphysical properties from Himawari-8/AHI infrared channels and its application in surface shortwave downward radiation estimation in the sun glint region.REMOTESENSINGOFENVIRONMENT 290. https://doi.org/10.1016/j.rse.2023.113548
22. Tang,C.,Shi,C.,Letu,H.,Ma,R.,Yoshida,M.,Kikuchi,M.,Xu,J.,Li,N.,Zhao,M.,Chen,L.,Shi,G.,2023. Evaluation and uncertainty analysis of Himawari-8 hourly aerosol product version 3.1 and its influence on surface solar radiation before and during the COVID-19 outbreak.SCIENCEOF THETOTALENVIRONMENT 892. https://doi.org/10.1016/j.scitotenv.2023.164456
23. Tong,X.,Li,Jingwei,Zhang,F.,Li,W.,Pan,B.,Li,Jun,Letu,H.,2023. The Deep-Learning-Based Fast Efficient Nighttime Retrieval of Thermodynamic Phase From Himawari-8 AHI Measurements.GEOPHYSICALRESEARCHLETTERS50. https://doi.org/10.1029/2022GL100901
24. Wang,Q.,Zhou,C.,Letu,H.,Zhu,Y.,Zhuge,X.,Liu,C.,Weng,F.,Wang,M.,2023. Obtaining Cloud Base Height and Phase From Thermal Infrared Radiometry Using a Deep Learning Algorithm.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3317532
25. Wang,T.,Wang,G.,Shi,C.,Du,Y.,Letu,H.,Zhang,W.,Xue,H.,2023a. Improved Algorithm to Derive All-Sky Longwave Downward Radiation From Space: Application to Fengyun-4A Measurements(vol 61,4103213,2023).IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3297859
26. Wang,T.,Wang,G.,Shi,C.,Du,Y.,Letu,H.,Zhang,W.,Xue,H.,2023b. Improved Algorithm to Derive All-Sky Longwave Downward Radiation From Space: Application to Fengyun-4A Measurements.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3289058
27. Wang,Y.,Shang,H.,Letu,H.,Wei,L.,Chen,F.,Hong,J.,Wang,Z.,Chen,L.,2023. Impact of Orbital Characteristics and Viewing Geometry on the Retrieval of Cloud Properties From Multiangle Polarimetric Measurements.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3329305
28. Xian,Y.,Wang,T.,Cheng,W.,Letu,H.,Du,Y.,Leng,W.,2023. A Uniform Model for Correcting Shortwave Downward Radiation Over Rugged Terrain at Various Scales.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3278081
29. Yao,X.,Yang,K.,Letu,H.,Zhou,X.,Wang,Y.,Ma,X.,Lu,H.,La,Z.,2023. Observation and Process Understanding of Typical Cloud Holes Above Lakes Over the Tibetan Plateau.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 128. https://doi.org/10.1029/2023JD038617
30. Zhang,X.,Shi,C.,Si,Y.,Letu,H.,Wang,L.,Tang,C.,Xu,N.,He,X.,Yin,S.,Zhang,Z.,Chen,L.,2023. Remote Sensing of Aerosols and Water-Leaving Radiance from Chinese FY-3/MERSI Based on a Simultaneous Method.REMOTESENSING15. https://doi.org/10.3390/rs15245650
31. Zhao,C.,Yang,Y.,Chi,Y.,Sun,Y.,Zhao,X.,Letu,H.,Xia,Y.,2023. Recent progress in cloud physics and associated radiative effects in China from 2016 to 2022.ATMOSPHERICRESEARCH 293. https://doi.org/10.1016/j.atmosres.2023.106899
32. Zhao,D.,Lin,Y.,Dong,W.,Qin,Y.,Chu,W.,Yang,K.,Letu,H.,Huang,L.,2023. Alleviated WRF Summer Wet Bias Over the Tibetan Plateau Using a New Cloud Macrophysics Scheme.JOURNALOFADVANCESINMODELINGEARTHSYSTEMS15. https://doi.org/10.1029/2023MS003616
33. Zhu,S.,Xu,J.,Fan,M.,Yu,C.,Letu,H.,Zeng,Q.,Zhu,H.,Wang,H.,Wang,Y.,Shi,J.,2023. Estimating Near-Surface Concentrations of Major Air Pollutants From Space: A Universal Estimation Framework LAPSO.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING61. https://doi.org/10.1109/TGRS.2023.3248180
34. He,J.,Letu,H.,Lei,Y.,Guo,E.,Bao,S.,Zhang,Y.,Tana,G.,Bao,Y.,2022. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979-2020.REMOTESENSING14. https://doi.org/10.3390/rs14030685
35. Khatri,P.,Hayasaka,T.,Holben,B.N.,Singh,R.P.,Letu,H.,Tripathi,S.N.,2022a. Increased aerosols can reverse Twomey effect in water clouds through radiative pathway.SCIENTIFICREPORTS12. https://doi.org/10.1038/s41598-022-25241-y
36. Khatri,P.,Hayasaka,T.,Irie,H.,Letu,H.,Nakajima,T.Y.,Ishimoto,H.,Takamura,T.,2022b. Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data.ATMOSPHERICMEASUREMENTTECHNIQUES 15,1967–1982. https://doi.org/10.5194/amt-15-1967-2022
37. Letu,H.,Nakajima,T.Y.,Wang,T.,Shang,H.,Ma,R.,Yang,K.,Baran,A.J.,Riedi,J.,Ishimoto,H.,Yoshida,M.,Shi,C.,Khatri,P.,Du,Y.,Chen,L.,Shi,J.,2022. A New Benchmark for Surface Radiation Products over the East Asia-Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite.BULLETIN OFTHEAMERICANMETEOROLOGICALSOCIETY103,E873–E888. https://doi.org/10.1175/BAMS-D-20-0148.1
38. Li,M.,Letu,H.,Peng,Y.,Ishimoto,H.,Lin,Y.,Nakajima,T.Y.,Baran,A.J.,Guo,Z.,Lei,Y.,Shi,J.,2022. Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations.ATMOSPHERICCHEMISTRYANDPHYSICS22,4809–4825. https://doi.org/10.5194/acp-22-4809-2022
39. Li,R.,Hu,J.,Wu,S.,Zhang,P.,Letu,H.,Wang,Y.,Wang,X.,Fu,Y.,Zhou,R.,Sun,L.,2022. Spatiotemporal Variations of Microwave Land Surface Emissivity (MLSE) over China Derived from Four-Year Recalibrated Fengyun 3B MWRI Data.ADVANCESINATMOSPHERICSCIENCES39,1536–1560. https://doi.org/10.1007/s00376-022-1314-0
40. Ri,A.,Ma,R.,Shang,H.,Xu,J.,Tana,G.,Shi,C.,He,J.,Bao,Y.,Chen,L.,Letu,H.,2022. Influence of multilayer cloud characteristics on cloud retrieval and estimation of surface downward shortwave radiation.FRONTIERSINENVIRONMENTALSCIENCE10. https://doi.org/10.3389/fenvs.2022.857414
41. Ri,X.,Tana,G.,Shi,C.,Nakajima,T.Y.,Shi,J.,Zhao,J.,Xu,J.,Letu,H.,2022. Cloud,Atmospheric Radiation and Renewal Energy Application (CARE) Version 1.0 Cloud Top Property Product From Himawari-8/AHI: Algorithm Development and Preliminary Validation.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING60. https://doi.org/10.1109/TGRS.2022.3172228
42. Wang,S.,Wang,T.,Leng,W.,Wang,G.,Letu,H.,2022. Toward an Improved Global Longwave Downward Radiation Product by Fusing Satellite and Reanalysis Data.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING60. https://doi.org/10.1109/TGRS.2022.3179017
43. Zhao,C.,Wang,Y.,Letu,H.,2022. New Progress and Challenges in Cloud-Aerosol-Radiation-Precipitation Interactions: Preface for a Special Issue.ADVANCESINATMOSPHERICSCIENCES39,1983–1985. https://doi.org/10.1007/s00376-022-2009-2
44. Zhou,G.,Wang,J.,Yin,Y.,Hu,X.,Letu,H.,Sohn,B.-J.,Yung,Y.L.,Liu,C.,2022. Detecting Supercooled Water Clouds Using Passive Radiometer Measurements.GEOPHYSICALRESEARCHLETTERS49. https://doi.org/10.1029/2021GL096111
45. Ji,D.,Shi,J.,Letu,H.,Li,W.,Zhang,H.,Shang,H.,2021. A Total Precipitable Water Product and Its Trend Analysis in Recent Years Based on Passive Microwave Radiometers.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING14,7324–7335. https://doi.org/10.1109/JSTARS.2021.3096535
46. Liu,L.,Weng,C.,Li,S.,Husi,L.,Hu,S.,Dong,P.,2021. Passive Remote Sensing of Ice Cloud Properties at Terahertz Wavelengths Based on Genetic Algorithm.REMOTESENSING13. https://doi.org/10.3390/rs13040735
47. Wang,J.,Jian,B.,Wang,G.,Zhao,Y.,Li,Y.,Letu,H.,Zhang,M.,Li,J.,2021. Climatology of Cloud Phase,Cloud Radiative Effects and Precipitation Properties over the Tibetan Plateau.REMOTESENSING13. https://doi.org/10.3390/rs13030363
48. Yan,X.,Zang,Z.,Jiang,Y.,Shi,W.,Guo,Y.,Li,D.,Zhao,C.,Husi,L.,2021a. A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM2.5.ENVIRONMENTALPOLLUTION 273. https://doi.org/10.1016/j.envpol.2021.116459
49. Yan,X.,Zang,Z.,Zhao,C.,Husi,L.,2021b. Understanding global changes in fine-mode aerosols during 2008-2017 using statistical methods and deep learning approach.ENVIRONMENTINTERNATIONAL 149. https://doi.org/10.1016/j.envint.2021.106392
50. Yu,Y.-C.,Shi,J.,Wang,T.,Letu,H.,Zhao,C.,2021. All-sky total and direct surface Shortwave Downward Radiation (SWDR) estimation from satellite: Applications to MODIS and Himawari-8.INTERNATIONALJOURNALOFAPPLIEDEARTHOBSERVATIONANDGEOINFORMATION102. https://doi.org/10.1016/j.jag.2021.102380
51. Bao,S.,Letu,H.,Zhao,J.,Lei,Y.,Zhao,C.,Li,J.,Tana,G.,Liu,C.,Guo,E.,Zhang,J.,He,J.,Bao,Y.,2020. Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003-2017.INTERNATIONALJOURNALOFCLIMATOLOGY 40,4082–4101. https://doi.org/10.1002/joc.6444
52. Du,B.,Ji,D.,Shi,J.,Wang,Y.,Lei,T.,Zhang,P.,Letu,H.,2020. The Retrieval of Total Precipitable Water over Global Land Based on FY-3D/MWRI Data.REMOTESENSING12. https://doi.org/10.3390/rs12091508
53. Lei,Y.,Letu,H.,Shang,H.,Shi,J.,2020. Cloud cover over the Tibetan Plateau and eastern China: a comparison of ERA5 and ERA-Interim with satellite observations.CLIMATEDYNAMICS 54,2941–2957. https://doi.org/10.1007/s00382-020-05149-x
54. Letu,H.,Shi,J.,Li,M.,Wang,T.,Shang,H.,Lei,Y.,Ji,D.,Wen,J.,Yang,K.,Chen,L.,2020a. A review of the estimation of downward surface shortwave radiation based on satellite data: Methods,progress and problems.SCIENCECHINA-EARTHSCIENCES 63,774–789. https://doi.org/10.1007/s11430-019-9589-0
55. Letu,H.,Yang,K.,Nakajima,T.Y.,Ishimoto,H.,Nagao,T.M.,Riedi,J.,Baran,A.J.,Ma,R.,Wang,T.,Shang,H.,Khatri,P.,Chen,L.,Shi,C.,Shi,J.,2020b. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite.REMOTESENSINGOFENVIRONMENT 239. https://doi.org/10.1016/j.rse.2019.111583
56. Li,W.,Zhang,F.,Shi,Y.-N.,Iwabuchi,H.,Zhu,M.,Li,J.,Han,W.,Letu,H.,Ishimoto,H.,2020. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres.OPTICSEXPRESS28,25730–25749. https://doi.org/10.1364/OE.400130
57. Ma,R.,Letu,H.,Yang,K.,Wang,T.,Shi,Chong,Xu,J.,Shi,J.,Shi,Chunxiang,Chen,L.,2020. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING58,5304–5316. https://doi.org/10.1109/TGRS.2019.2963262
58. Peng,Z.,Letu,H.,Wang,T.,Shi,C.,Zhao,C.,Tana,G.,Zhao,N.,Dai,T.,Tang,R.,Shang,H.,Shi,J.,Chen,L.,2020. Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China.JOURNALOFQUANTITATIVESPECTROSCOPY &RADIATIVETRANSFER 240. https://doi.org/10.1016/j.jqsrt.2019.106672
59. Shang,H.,Letu,H.,Chen,L.,Riedi,J.,Ma,R.,Wei,L.,Labonnote,L.C.,Hioki,S.,Liu,C.,Wang,Z.,Wang,J.,2020. Cloud thermodynamic phase detection using a directional polarimetric camera (DPC).JOURNALOFQUANTITATIVESPECTROSCOPY &RADIATIVETRANSFER 253. https://doi.org/10.1016/j.jqsrt.2020.107179
60. Si,Y.,Chen,L.,Xiong,X.,Shi,S.,Husi,L.,Cai,K.,2020. Evaluation of the MISR fine resolution aerosol product using MODIS,MISR,and ground observations over China.ATMOSPHERICENVIRONMENT 223. https://doi.org/10.1016/j.atmosenv.2019.117229
61. Wang,T.,Shi,J.,Ma,Y.,Letu,H.,Li,X.,2020. All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST,column water vapor and cloud top temperature.ISPRSJOURNALOFPHOTOGRAMMETRYANDREMOTESENSING161,52–60. https://doi.org/10.1016/j.isprsjprs.2020.01.011
62. Zhang,M.,Teng,S.,Di,D.,Hu,X.,Letu,H.,Min,M.,Liu,C.,2020. Information Content of Ice Cloud Properties from Multi-Spectral,-Angle and -Polarization Observations.REMOTESENSING12. https://doi.org/10.3390/rs12162548
63. Zhao,C.,Yang,Y.,Fan,H.,Huang,J.,Fu,Y.,Zhang,X.,Kang,S.,Cong,Z.,Letu,H.,Menenti,M.,2020. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau.NATIONALSCIENCEREVIEW7,492+. https://doi.org/10.1093/nsr/nwz184
64. Bao,S.,Letu,H.,Zhao,J.,Shang,H.,Lei,Y.,Duan,A.,Chen,B.,Bao,Y.,He,J.,Wang,T.,Ji,D.,Tana,G.,Shi,J.,2019. Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003-2015 based on MODIS data.INTERNATIONALJOURNALOFCLIMATOLOGY 39,532–543. https://doi.org/10.1002/joc.5826
65. Dai,T.,Cheng,Y.,Suzuki,K.,Goto,D.,Kikuchi,M.,Schutgens,N.A.J.,Yoshida,M.,Zhang,P.,Husi,L.,Shi,G.,Nakajima,T.,2019. Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter.JOURNALOFADVANCESINMODELINGEARTHSYSTEMS11,680–711. https://doi.org/10.1029/2018MS001475
66. Khatri,P.,Iwabuchi,H.,Hayasaka,T.,Irie,H.,Takamura,T.,Yamazaki,A.,Damiani,A.,Letu,H.,Kai,Q.,2019. Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers.ATMOSPHERICMEASUREMENTTECHNIQUES 12,6037–6047. https://doi.org/10.5194/amt-12-6037-2019
67. Lai,R.,Teng,S.,Yi,B.,Letu,H.,Min,M.,Tang,S.,Liu,C.,2019. Comparison of Cloud Properties from Himawari-8 and FengYun-4A Geostationary Satellite Radiometers with MODIS Cloud Retrievals.REMOTESENSING11. https://doi.org/10.3390/rs11141703
68. Letu,H.,Nagao,T.M.,Nakajima,T.Y.,Riedi,J.,Ishimoto,H.,Baran,A.J.,Shang,H.,Sekiguchi,M.,Kikuchi,M.,2019. Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING57,3229–3239. https://doi.org/10.1109/TGRS.2018.2882803
69. Li,D.,Qin,K.,Wu,L.,Xu,J.,Letu,H.,Zou,B.,He,Q.,Li,Y.,2019. Evaluation of JAXA Himawari-8-AHI Level-3 Aerosol Products over Eastern China.ATMOSPHERE 10. https://doi.org/10.3390/atmos10040215
70. Nakajima,T.Y.,Ishida,H.,Nagao,T.M.,Hori,M.,Letu,H.,Higuchi,R.,Tamaru,N.,Imoto,N.,Yamazaki,A.,2019. Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products.PROGRESS IN EARTHANDPLANETARYSCIENCE6. https://doi.org/10.1186/s40645-019-0295-9
71. Shang,H.,Letu,H.,Breon,F.-M.,Riedi,J.,Ma,R.,Wang,Ziming,Nakajima,T.Y.,Wang,Zhongting,Chen,L.,2019a. An improved algorithm of cloud droplet size distribution from POLDER polarized measurements.REMOTESENSINGOFENVIRONMENT 228,61–74. https://doi.org/10.1016/j.rse.2019.04.013
72. Shang,H.,Letu,H.,Pan,X.,Wang,Z.,Ma,R.,Liu,C.,Dai,T.,Li,S.,Chen,L.,Chen,C.,Hu,Q.,2019b. Diurnal haze variations over the North China plain using measurements from Himawari-8/AHI.ATMOSPHERICENVIRONMENT 210,100–109. https://doi.org/10.1016/j.atmosenv.2019.04.036
73. Sun,Y.,Zhao,C.,Su,Y.,Ma,Z.,Li,J.,Letu,H.,Yang,Y.,Fan,H.,2019. Distinct Impacts of Light and Heavy Precipitation on PM2.5 Mass Concentration in Beijing. EARTH ANDSPACESCIENCE6,1915–1925. https://doi.org/10.1029/2019EA000717
74. Wang,J.,Liu,C.,Yao,B.,Min,M.,Letu,H.,Yin,Y.,Yung,Y.L.,2019. A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS).REMOTESENSINGOFENVIRONMENT 227,1–11. https://doi.org/10.1016/j.rse.2019.02.024
75. Wang,T.,Shi,J.,Letu,H.,Ma,Y.,Li,X.,Zheng,Y.,2019a. Detection and Removal of Clouds and Associated Shadows in Satellite Imagery Based on Simulated Radiance Fields.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 124,7207–7225. https://doi.org/10.1029/2018JD029960
76. Wang,T.,Shi,J.,Ma,Y.,Husi,L.,Comyn-Platt,E.,Ji,D.,Zhao,T.,Xiong,C.,2019b. Recovering Land Surface Temperature Under Cloudy Skies Considering the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 124,3401–3416. https://doi.org/10.1029/2018JD028976
77. Wu,X.,Zhang,L.,Zhao,C.,Gegen,T.,Zheng,C.,Shi,X.,Geng,J.,Letu,H.,2019. Satellite-Based Assessment of Local Environment Change by Wind Farms in China. EARTH ANDSPACESCIENCE6,947–958. https://doi.org/10.1029/2019EA000628
78. Yu,Y.,Shi,J.,Wang,T.,Letu,H.,Yuan,P.,Zhou,W.,Hu,L.,2019. Evaluation of the Himawari-8 Shortwave Downward Radiation (SWDR) Product and its Comparison With the CERES-SYN,MERRA-2,and ERA-Interim Datasets.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING12,519–532. https://doi.org/10.1109/JSTARS.2018.2851965
79. Zhao,C.,Chen,Y.,Li,J.,Letu,H.,Su,Y.,Chen,T.,Wu,X.,2019. Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations.INTERNATIONALJOURNALOFCLIMATOLOGY 39,2612–2629. https://doi.org/10.1002/joc.5975
80. Zhou,W.,Shi,J.C.,Wang,T.X.,Peng,B.,Husi,L.,Yu,Y.C.,Zhao,R.,2019. New Methods for Deriving Clear-Sky Surface Longwave Downward Radiation Based on Remotely Sensed Data and Ground Measurements. EARTH ANDSPACESCIENCE6,2071–2086. https://doi.org/10.1029/2019EA000754
81. Han,X.,Tana,G.,Qin,K.,Letu,H.,2018.ESTIMATINGINDUSTRIALSTRUCTURECHANGESIN CHINA USING DMSP - OLS NIGHT-TIME LIGHT DATA DURING 1999-2012,in: Wu,L.,Cohen,J.,Loyola,D.,Letu,H,Qin,K (Eds.),2018ISPRSWORKSHOP ONREMOTESENSINGANDSYNERGICANALYSISONATMOSPHERICENVIRONMENT,International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Int Soc Photogrammetry & Remote Sensing,pp. 9–15. https://doi.org/10.5194/isprs-archives-XLII-3-W5-9-2018
82. Nakajima,T.Y.,Takenaka,H.,Nagao,T.M.,Letu,H.,2018. Synergistic use of next-generation geostationary and polar orbit satellites for investigating aerosols,clouds,and radiation,in: Im,E.,Yang,S. (Eds.),REMOTESENSINGOFTHEATMOSPHERE,CLOUDS,ANDPRECIPITATION VII,Proceedings of SPIE. SPIE;Natl Aeronaut & Space Adm;Chinese Acad Sci,Inst Remote Sensing & Digital Earth;Chinese Acad Sci,State Key Lab Remote Sensing Sci;Minist Earth Sci. https://doi.org/10.1117/12.2323564
83. Qin,K.,Wang,L.,Xu,J.,Letu,H.,Zhang,K.,Li,D.,Zou,J.,Fan,W.,2018. Haze Optical Properties from Long-Term Ground-Based Remote Sensing over Beijing and Xuzhou,China.REMOTESENSING10. https://doi.org/10.3390/rs10040518
84. Shang,H.,Letu,H.,Nakajima,T.Y.,Wang,Z.,Ma,R.,Wang,T.,Lei,Y.,Ji,D.,Li,S.,Shi,J.,2018a. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.SCIENTIFICREPORTS8. https://doi.org/10.1038/s41598-018-19431-w
85. Shang,H.,Letu,H.,Peng,Z.,Wang,Z.,2018b.DEVELOPMENT OFADAYTIMECLOUDANDAEROSOLLOADINGSDETECTIONALGORITHMFORHIMAWARI-8 SA℡LITEMEASUREMENTS OVER DESERT,in: Wu,L.,Cohen,J.,Loyola,D.,Letu,H,Qin,K. (Eds.),2018ISPRSWORKSHOP ONREMOTESENSINGANDSYNERGICANALYSISONATMOSPHERICENVIRONMENT,International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Int Soc Photogrammetry & Remote Sensing,pp. 61–66. https://doi.org/10.5194/isprs-archives-XLII-3-W5-61-2018
86. Shi,H.,Li,W.,Fan,X.,Zhang,J.,Hu,B.,Husi,L.,Shang,H.,Han,X.,Song,Z.,Zhang,Y.,Wang,S.,Chen,H.,Xia,X.,2018. First assessment of surface solar irradiance derived from Himawari-8 across China. SOLAR ENERGY 174,164–170. https://doi.org/10.1016/j.solener.2018.09.015
87. Shi,S.,Cheng,T.,Gu,X.,Letu,H.,Guo,H.,Chen,H.,Wang,Y.,Wu,Y.,2018. Synergistic Retrieval of Multitemporal Aerosol Optical Depth Over North China Plain Using Geostationary Satellite Data of Himawari-8.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 123,5525–5537. https://doi.org/10.1029/2017JD027963
88. Wang,J.,Liu,C.,Min,M.,Hu,X.,Lu,Q.,Husi,L.,2018. Effects and Applications of Satellite Radiometer 2.25-μm Channel on Cloud Property Retrievals.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING56,5207–5216. https://doi.org/10.1109/TGRS.2018.2812082
89. Wang,T.,Shi,J.,Yu,Y.,Husi,L.,Gao,B.,Zhou,W.,Ji,D.,Zhao,T.,Xiong,C.,Chen,L.,2018. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements.REMOTESENSINGOFENVIRONMENT 205,100–111. https://doi.org/10.1016/j.rse.2017.11.011
90. Ji,D.-B.,Shi,J.-C.,Letu,H.,Wang,T.-X.,Zhao,T.-J.,2017. Atmospheric Effect Analysis and Correction of the Microwave Vegetation Index.REMOTESENSING9. https://doi.org/10.3390/rs9060606
91. Qin,K.,Wang,L.,Wu,L.,Xu,J.,Rao,L.,Letu,H.,Shi,T.,Wang,R.,2017. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang,China.ATMOSPHERICRESEARCH 198,113–122. https://doi.org/10.1016/j.atmosres.2017.08.018
92. Shang,H.,Chen,L.,Letu,H.,Zhao,M.,Li,S.,Bao,S.,2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China.JOURNALOFGEOPHYSICALRESEARCH-ATMOSPHERES 122,3528–3543. https://doi.org/10.1002/2016JD025659
93. Si,Y.,Li,S.,Chen,L.,Shang,H.,Wang,L.,Letu,H.,2017. Assessment and Improvement of MISR Angstrom Exponent and Single-Scattering Albedo Products UsingAERONETData in China.REMOTESENSING9. https://doi.org/10.3390/rs9070693
94. Wang,T.,Shi,J.,Husi,L.,Zhao,T.,Ji,D.,Xiong,C.,Gao,B.,2017a. Effect of Solar-Cloud-Satellite Geometry on Land Surface Shortwave Radiation Derived from Remotely Sensed Data.REMOTESENSING9. https://doi.org/10.3390/rs9070690
95. Wang,T.,Shi,J.,Husi,L.,Zhao,T.,Ji,D.,Xiong,C.,Ma,Y.,Zhou,W.,Yu,Y.,Zhao,R.,2017b.NEWPROGRESSINDERIVING CLOUDY-SKYLANDSURFACELONGWAVERADIATIONBASEDONMULTIPLE REMO℡Y SENSED DATA,in: 2017IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Institute of Elect & Electron Engineers Geoscience & Remote Sensing Soc;IEEE;IEEE GRSS,pp. 4681–4683.
96. Khatri,P.,Irie,H.,Takamura,T.,Letu,H.,2016.OPTICALCHARACTERISTICSOFAEROSOLS ANDCLOUDSSTUDIEDBY USING GROUND-BASED SKYNET AND SA℡LITEREMOTESENSINGDATA,in: 2016IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Inst Elect & Elect Engineers;Inst Elect & Elect Engineers,Geoscience & Remote Sensing Soc;NSSC,pp. 377–380. https://doi.org/10.1109/IGARSS.2016.7729092
97. Letu,H.,Ishimoto,H.,Riedi,J.,Nakajima,T.Y.,Labonnote,L.C.,Baran,A.J.,Nagao,T.M.,Sekiguchi,M.,2016. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission.ATMOSPHERICCHEMISTRYANDPHYSICS16,12287–12303. https://doi.org/10.5194/acp-16-12287-2016
98. Li,S.,Chen,L.,Fan,M.,Tao,J.,Wang,Z.,Yu,C.,Si,Y.,Letu,H.,Liu,Y.,2016a. Estimation of GEOS-Chem and GOCART Simulated Aerosol Profiles UsingCALIPSOObservations over the Contiguous United States.AEROSOLANDAIRQUALITYRESEARCH 16,3256–3265. https://doi.org/10.4209/aaqr.2015.03.0173
99. Li,S.,Yu,C.,Chen,L.,Tao,J.,Letu,H.,Ge,W.,Si,Y.,Liu,Y.,2016b. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China.ATMOSPHERICENVIRONMENT 141,320–332. https://doi.org/10.1016/j.atmosenv.2016.06.075
100. Qin,K.,Wu,L.,Wong,M.S.,Letu,H.,Hu,M.,Lang,H.,Sheng,S.,Teng,J.,Xiao,X.,Yuan,L.,2016. Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based Lidar andCALIPSOsatellite.ATMOSPHERICENVIRONMENT 141,20–29. https://doi.org/10.1016/j.atmosenv.2016.06.042
101. Shang,H.,Chen,L.,Letu,H.,Li,S.,Jia,S.,Wang,Y.,2016. THE EFFECT OFCLOUDOPTICALTHICKNESS,GROUNDSURFACEALBEDO AND ABOVE-CLOUDABSORBINGDUST LAYER ONTHECLOUDBOWSTRUCTURE,in: 2016IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Inst Elect & Elect Engineers;Inst Elect & Elect Engineers,Geoscience & Remote Sensing Soc;NSSC,pp. 2174–2176. https://doi.org/10.1109/IGARSS.2016.7729561
102. Husltu,Yu-hai,B.,Jian,X.,Song,Q.,Gang,B.,2015. Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models.SPECTROSCOPYANDSPECTRALANALYSIS 35,1165–1168. https://doi.org/10.3964/j.issn.1000-0593(2015)05-1165-04
103. Letu,H.,Hara,M.,Tana,G.,Bao,Y.,Nishio,F.,2015. Generating the Nighttime Light of the Human Settlements by Identifying Periodic Components from DMSP/OLS Satellite Imagery.ENVIRONMENTALSCIENCE&TECHNOLOGY 49,10503–10509. https://doi.org/10.1021/acs.est.5b02471
104. Shang,H.,Chen,L.,Breon,F.M.,Letu,H.,Li,S.,Wang,Z.,Su,L.,2015. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument.ATMOSPHERICMEASUREMENTTECHNIQUES 8,4931–4945. https://doi.org/10.5194/amt-8-4931-2015
105. Letu,H.,Nagao,T.M.,Nakajima,T.Y.,Matsumae,Y.,2014a. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.APPLIEDOPTICS 53,7523–7533. https://doi.org/10.1364/AO.53.007523
106. Letu,H.,Nakajima,T.Y.,Nishio,F.,2014b. Regional-Scale Estimation of Electric Power and Power Plant CO2 Emissions Using Defense Meteorological Satellite Program Operational Linescan System Nighttime Satellite Data.ENVIRONMENTALSCIENCE&TECHNOLOGYLETTERS1,259–265. https://doi.org/10.1021/ez500093s
107. Letu,H.,Nakajima,T.Y.,Matsui,T.N.,Matsumae,Y.,2013. Optimizing the Ice Crystal Scattering Database for the GCOM-C/SGLI Satellite Mission,in: Cahalan,R.,Fischer,J. (Eds.),RADIATIONPROCESSES INTHEATMOSPHERE AND OCEAN (IRS2012),AIP Conference Proceedings. Karlsruhe Inst Technol (KIT);Leibniz Inst Tropospher Res (IFT);German Aerosp Ctr (DLR);European Space Agcy (ESA);German Weather Serv (DWD);European Org Exploitat Meteorol Satellites (EUMETSAT);IAMAS,IRC,pp. 188–191. https://doi.org/10.1063/1.4804738
108. Tana,G.,Letu,H.,Cheng,Z.,Tateishi,R.,2013. Wetlands Mapping in North America by Decision Rule Classification Using MODIS and Ancillary Data.IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONS ANDREMOTESENSING6,2391–2401. https://doi.org/10.1109/JSTARS.2013.2249499
109. Letu,H.,Bao,Y.,Tana,G.,Hara,M.,Nishio,F.,2012a. Relationship between DMSP/OLS nighttime light and CO2 emission from electric power plant,in: Entekhab,D.,Honda,Y.,Sawada,H.,Shi,J.,Oki,T. (Eds.),LANDSURFACEREMOTESENSING,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci. https://doi.org/10.1117/12.977290
110. Letu,H.,Hara,M.,Tana,G.,Nishio,F.,2012b. A Saturated Light Correction Method for DMSP/OLS Nighttime Satellite Imagery.IEEETRANSACTIONSONGEOSCIENCE ANDREMOTESENSING50,389–396. https://doi.org/10.1109/TGRS.2011.2178031
111. Nakajima,T.Y.,Nagao,T.M.,Letu,H.,Ishida,H.,Suzuki,K.,2012. On the cloud observations in JAXA’s next coming satellite missions,in: Hayasaka,T.,Nakamura,K.,Im,E. (Eds.),REMOTESENSINGOFTHEATMOSPHERE,CLOUDS,ANDPRECIPITATION IV,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci;Natl Inst Informat & Commun Technol. https://doi.org/10.1117/12.977250
112. Tana,G.,Letu,H.,Ryutaro,T.,2012. Validation of the wetlands map derived from MODIS imagery in North America,in: Entekhab,D.,Honda,Y.,Sawada,H.,Shi,J.,Oki,T. (Eds.),LANDSURFACEREMOTESENSING,Proceedings of SPIE. SPIE;Japan Aerosp Explorat Agcy (JAXA);Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Commemorat Org Japan World Exposit;Indian Space Res Org (ISRO);State Key Lab Remote Sensing Sci. https://doi.org/10.1117/12.977222
113. Letu,H.,Nakajima,T.Y.,Matsui,T.N.,2011a.DEVELOPMENT OF THEICECRYSTALSCATTERINGDATABASEFOR GCOM-C/SGLI,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 3225–3228. https://doi.org/10.1109/IGARSS.2011.6049906
114. Letu,H.,Tana,G.,Hara,M.,Nishio,F.,2011b.MONITORINGTHEELECTRICPOWERCONSUMPTIONBYLIGHTING FROM DMSP/OLSNIGHTTIME SA℡LITEIMAGERY,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 2113–2116.
115. Matsui,T.N.,Suzuki,K.,Nakajima,T.Y.,Letu,H.,2011.INTERPRETATIONOF MULTI-WAVELENGTH-RETRIEVEDCLOUDDROPLETEFFECTIVERADII IN TERMS OFCLOUDVERTICALINHOMOGENEITY USINGASPECTRAL-BINMICROPHYSICS CLOUD MODEL ANDTHERADIATIVETRANSFERCOMPUTATION,in: 2011IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM (IGARSS),IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE;Inst Elect & Elect Engineers Geosci & Remote Sensing Soc (IEEE GRSS),pp. 3229–3232. https://doi.org/10.1109/IGARSS.2011.6049907
116. Letu,H.,Hara,M.,Yagi,H.,Naoki,K.,Tana,G.,Nishio,F.,Shuhei,O.,2010. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects.INTERNATIONALJOURNALOFREMOTESENSING31,4443–4458. https://doi.org/10.1080/01431160903277464
117. Nakajima,T. Y.,Kuji,M.,Sano,I.,Schutgens,N.,Mano,Y.,Riedi,J.,Ishida,H.,Suzuki,K.,Okamoto,H.,Matsui,T.,Letu,H.,2010.OBSERVATIONS OF CLOUDANDAEROSOLFROMGCOM-C SGLI,in: Kajiwara,K.,Muramatsu,K.,Soyama,N.,Endo,T.,Ono,A.,Akatsuka,S. (Eds.),NETWORKING THE WORLD WITHREMOTESENSING,International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences. ISPRS Tech Commiss,pp. 30–34.
118. Nakajima,Takashi Y.,Matsui,T.N.,Letu,H.,Suzuki,K.,Ishida,H.,Kikuchi,N.,Stephens,G.L.,Nakajima,T.,Shimoda,H.,2010. Cloud sciences using satellite remote sensing,cloud growth model,and radiative transfer,in: Mukai,S.,Frouin,R.,Sohn,B. (Eds.),REMOTESENSINGOFTHEATMOSPHERE AND CLOUDS III,Proceedings of SPIE. SPIE;Korea Ocean Res & Dev Inst;Korea Ocean Satellite Ctr;Incheon Tourism Org;Natl Aeronaut & Space Adm;Natl Inst Informat & Commun Technol;Sci Technol Corp;Indian Space Res Org;Indian Natl Ctr Ocean Informat Serv. https://doi.org/10.1117/12.869436
119. Tana,G.,Letu,H.,Erdenee,B.,Tateishi,R.,2010.COMPARISONOFNEEDLELEAFDECIDUOUSFORESTANDNEEDLELEAFEVERGREEN FOREST IN THE GLCNMO WITHIGBPDISCOVERANDGLC2000PRODUCT,in: 2010IEEEINTERNATIONALGEOSCIENCE ANDREMOTESENSINGSYMPOSIUM,IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE,pp. 343–346. https://doi.org/10.1109/IGARSS.2010.5651660
120. Letu,H.,Hara,M.,Yagi,H.,Tana,G.,Nishio,F.,2009. Estimating the energy consumption with nighttime city light from the DMSP/OLS imagery,in: 2009 JOINT URBANREMOTESENSINGEVENT,VOLS 1-3. Int Soc Photogrammetry & Remote Sensing;IEEE Geosci & Remote Sensing Soc;Shanghai Assoc Sci & Technol,p. 1364.