曾巧林等:Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei
被阅读 2142 次
2018-12-06
Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei
作者:Zeng, QL (Zeng, Qiaolin)[ 1,2 ] ; Chen, LF (Chen, Liangfu)[ 1,2 ] ; Zhu, H (Zhu, Hao)[ 3 ] ; Wang, ZF (Wang, Zifeng)[ 1 ] ; Wang, XH (Wang, Xinhui)[ 4 ] ; Zhang, L (Zhang, Liang)[ 5 ] ; Gu, TY (Gu, Tianyu)[ 5 ] ; Zhu, GY (Zhu, Guiyan)[ 5 ] ; Zhang, Y (Zhang, Yang)[ 5 ]
SENSORS
卷: 18  期: 10
文献号: 3456
DOI: 10.3390/s18103456
出版年: OCT 2018
 
摘要
Particulate matter with an aerodynamic diameter less than 2.5 m (PM2.5) is related to various adverse health effects. Ground measurements can yield highly accurate PM2.5 concentrations but have certain limitations in the discussion of spatial-temporal variations in PM2.5. Satellite remote sensing can obtain continuous and long-term coverage data, and many previous studies have demonstrated the relationship between PM2.5 and AOD (aerosol optical depth) from theoretical analysis and observation. In this study, a new aerosol product with a high spatial-temporal resolution retrieved from the AHI (the Advance Himawari Imager) was obtained using a vertical-humidity correction method to estimate hourly PM2.5 concentrations in Hebei. The hygroscopic growth factor was fitted at each site (in a total of 137 matched sites). Meanwhile, assuming that there was little change in f(RH)at a certain scale, the neares f(RH)of each pixel was determined to calculate PM2.5 concentrations. Compared to the correlation between AOD and PM2.5, the relationship between the dry mass extinction efficiency obtained by vertical-humidity correction and the ground-measured PM2.5 significantly improved, with r coefficient values increasing from 0.19-0.47 to 0.61-0.76. The satellite-estimated hourly PM2.5 concentrations were consistent with the ground-measured PM2.5, with a high r (0.8 +/- 0.07) and a low RMSE (root mean square error, 30.4 +/- 5.5 g/m(3)) values, and the accuracy in the afternoon (13:00-16:00) was higher than that in the morning (09:00-12:00). Meanwhile, in a comparison of the daily average PM2.5 concentrations of 11 sites from different cities, the r values were approximately 0.91 +/- 0.03, and the RMSEs were between 13.94 and 31.44 g/m(3). Lastly, pollution processes were analyzed, and the analysis indicated that the high spatial-temporal resolution of the PM2.5 data could continuously and intuitively reflect the characteristics of regional pollutants (such as diffusion and accumulation), which is of great significance for the assessment of regional air quality.
 
通讯作者地址: Zhu, H (通讯作者)
Chongqing Inst Meteorol Sci, Chongqing 401147, Peoples R China.
通讯作者地址: Zhang, L (通讯作者)
Environm Emergency & Heavy Pollut Weather Warning, Shijiazhuang 050051, Hebei, Peoples R China.
地址:
[ 1 ] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[ 2 ] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[ 3 ] Chongqing Inst Meteorol Sci, Chongqing 401147, Peoples R China
[ 4 ] Beijing Municipal Environm Monitoring Ctr, Remote Sensing Monitoring, Beijing 100048, Peoples R China
[ 5 ] Environm Emergency & Heavy Pollut Weather Warning, Shijiazhuang 050051, Hebei, Peoples R China