邬明权等:Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data
被阅读 1213 次
2015-11-13
Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data
作者:Wu, MQ (Wu, Mingquan)[ 1 ] ; Huang, WJ (Huang, Wenjiang)[ 2 ] ; Niu, Z (Niu, Zheng)[ 1 ] ; Wang, CY (Wang, Changyao)[ 1 ]
SENSORS
卷: 15  期: 9  页: 24002-24025
DOI: 10.3390/s150924002
出版年: SEP 2015
 
摘要
Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.
 
通讯作者地址: Wu, MQ (通讯作者)
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China.
地址:
[ 1 ] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[ 2 ] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Lab Digital Earth Sci, Beijing 100094, Peoples R China