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New  optical  and  microwave  integrated  vegetation  indices  (VIs)  were  designed  based  on  observations  from
both field  experiments  and  satellite  (HJ-1  and  RADARSAT-2)  data.  It  was  found  that  these  VIs  perform
better  in  estimating  the  structure  parameters  of  maize,  such  as  Leaf  Area  Index  (LAI),  height  and  biomass,
than  the  original  ones.  This  investigation  focused  on the  difference  of  interaction  between  the  multispec-
tral  reflectance  and  microwave  backscattering  signatures  with  the maize  growth  variables.  Because  the
maize  was near  the  heading  stage  with  large  vegetation  coverage  in  the  experiment,  the reflectance  of  the
near-infrared  band  of  HJ-1  was  much  less  sensitive  to the  structure  variables  than  that  of  the  visible-light
egetation indices (VIs)
J-1
ADARSAT-2

band.  Thus,  the  optical  VIs  formulated  using  those  bands  were  saturated  to  estimate  the  structure  param-
eters. With  respect  to  the RADARSAT-2  data,  there  was  a relatively  strong  relationship  between  the  HV
cross-polarization  and the  volume  scattering  of the  maize,  which  was  mostly  determined  by  the crown
structure.  The  modified  VIs  were  designed  using  both  the  VIs  of  HJ-1  and  the  HV cross-polarization  of
RADARSAT-2  to overcome  the  saturation  limitation.  The  validation  showed  that  this  integrated  method

od  al
of determining  VIs  is a go

. Introduction

The accurate estimation of vegetation biochemical and biophys-
cal variables is important in many agricultural, ecological, and

eteorological applications (Darvishzadeh et al., 2008). Three of
hese variables—Leaf Area Index (LAI), height, and biomass—can
e used to describe the architecture of plants, monitor changes in
anopy structure, and predict growth and yield. The reliable estima-
ion of these variables during the growing season would improve
lanning, the management of grain production, the handling of the
rain, and marketing (Dente et al., 2008). Moreover, because these
ariables vary seasonally and respond rapidly to stress factors and
hanges in climatic conditions, it is important to estimate their val-
es frequently, but this can be difficult when the vegetation covers

arge areas.
Due to its ability to collect information over regional and global

cales, remote sensing is the only reasonable method that can
e used to estimate these variables over large areas. Plant stand
rchitecture is the dominant factor responsible for the spectral

eflectance of vegetative canopies in the visible and near-infrared
NIR) spectrum, and studies show that there are fairly strong
orrelations between these parameters and spectral vegetation

∗ Corresponding author. Tel.: +86 1064806258.
E-mail address: gaoshuai@live.com (S. Gao).
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ternative  to that  using  only  the optical  or microwave  observation.
©  2013  Elsevier  B.V.  All rights  reserved.

indices (VIs) using various combinations of visible, NIR, and short-
wave reflectance (Chen and Cihlar, 1996; Chen et al., 1997).
However, methods based solely on optical data will always have
some limitations because the vegetation indices lose accuracy
for dense canopies when the LAI exceeds 2–5 for some crops
(Haboudane et al., 2004; Tang et al., 2007). Moreover, the use of
optical data is restricted by the requirement of cloud-free daylight
conditions.

Similarly, in most agricultural applications, space-borne remote
sensing is a common tool for analyzing large-scale landscape vege-
tation dynamics, which can include analyzing land cover, land use
change, productivity, and disturbances (Frolking et al., 2009). How-
ever, passive optical remote sensing of crops can be obscured by
frequent cloud cover and by significant atmospheric aerosol inter-
ference during the dry season (Zhao et al., 2005). SAR is much
less sensitive to atmospheric moisture and aerosols than optical
sensors (Ulaby et al., 1986), and it has the advantage of dense veg-
etation detection. For example, for maize near the heading period,
most of the C-band backscattering of vegetation is known to come
from canopies and not from the ground, especially at high inci-
dence angles, which is based on its relatively low sensitivity to
soil moisture (Ulaby et al., 1984; Inoue et al., 2002). However, SAR

observation is limited by its imaging geometry and radiation mech-
anism. Therefore, it is urgently necessary to develop alternative
approaches that ideally can be used in combination with the optical
methods. In fact, this integration of optical and SAR observation has

dx.doi.org/10.1016/j.jag.2013.02.002
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:gaoshuai@live.com
dx.doi.org/10.1016/j.jag.2013.02.002
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ig. 1. The location of study area (RADARSAT-2 image after Freeman–Durden three-
omponent decomposition).

een used for the LAI estimation of crops and forests; and in some
ases, the results have been closer to the actual values (Clevers and
anleeuwen, 1996; Manninen et al., 2005a). This good agreement is
ue to the fact that optical observation can offer an accurate inter-
retation of photosynthesis and non-photosynthesis components
f plants and SAR is much more sensitive to plant structure and soil
oisture, both of which reflect the growing status of vegetation.
In this analysis, high-resolution SAR data (RADARSAT-2) com-

ined with optical data (HJ-1) were used to retrieve crop (maize)
tructure parameters. Maize is an important food crop that is widely
lanted in northern China. Thus, monitoring its growing status and
stimating its production has become increasingly necessary. How-
ver, optical and radar remote sensing have limitations in crop
onitoring, especially with dense vegetation coverage. It is for this

eason that this study aimed to improve the synergic use of optical
nd radar remote sensing data to improve the estimation accuracy
f crop architecture parameters, such as LAI, height and biomass in
he context of precision farming. The use of VIs for convenient crop

onitoring has inspired the development and testing of modified
Is, which combine SAR data with optical data. Our aim is to present
n integrated inversion method that simply and accurately deter-
ines the architecture parameters of crop canopies for agriculture
anagement purposes.

. Materials

.1. Field experiments
Field experiments were carried out in the Huailai area (Fig. 1),
4 km north of Beijing, China. The test site was located in the
at area of the Huailai-Yanqing Basin, along the south of the

able 1
tatistics of the measured parameters in the 29 plots.

LAI Height (cm) Biomass (g/m2) 

Min 1.17 44 246.97 

Max  3.44 180.4 6526.25 

Mean 2.22 121.76 1806.55 

SD  0.64 35.23 1467.95 
bservation and Geoinformation 24 (2013) 1–8

Guanting Reservoir, which is dominated by maize. Most of the
maize is sowed in late May, and flowering occurs near late July; the
maize is harvested between mid-September and late September.
Due to the influence of mountains to the north and a nearby
reservoir, there are many foggy and cloudy days in summer. As
a result, the active and passive remote sensing experiments were
coordinated with the measurement of the optical reflectance and
microwave backscattering characteristics of the vegetation. The
field parameters of maize used in the study were investigated from
16 July to 18 July 2010, prior to the emergence of tassels. The field
parameters measured included LAI, height, biomass, Leaf Water
Area Index (LWAI), Leaf Area Density (LAD), Chlorophyll Content
(CC, SPAD reading), and Leaf Water Content (LWC) (Table 1).

In the study site, there were 29 rectangular sample plots with a
width and a length of at least 50 m.  Most of the plots were ∼6000 m2

in area, with the smallest plot having an area >3000 m2. All of the
plots were used for correlation and sensitive analyses. The latitude
and longitude of each plot was determined by Global Positioning
System (GPS) measurements. LAI and LAD were measured using
an LAI-2000 (LI-Cor Inc., Lincoln, Nebraska). In each measurement,
three representative positions were chosen, and in every position,
two repeated measurements were executed. For LAI and LAD, the
mean values were calculated as reference values of each plot. The
standard deviation (SD) for LAI within a plot varied from 0.1 to
0.2, with an average of 0.14. For LAD, the SD value varied from
1 to 5, with an average of ∼3. For each plot, 5–10 representative
maize plants were measured using a measuring tape to determine
their mean height, and the average SD for these measurements was
found to be ∼8 cm.  In addition, an SPAD-502 meter (Konic Minolta,
Japan) was  used to provide an instantaneous measurement of the
leaf Chlorophyll Content; the SD for this measurement was ∼4.9.
Moreover, fresh leaf samples from each plot were weighed (fresh
weight, F) and then oven-dried at 60 ◦C until a constant weight (dry
weight, D) was  reached. The value of LWC  was calculated using Eq.
(1). For LWC, the SD varied between 0.03 and 0.17, and the average
value was 0.08.

LWC = F  − D

F
×  100% (1)

LWAI = LAI × LWC  (2)

Biomass = 1.01 × height × exp(1.05 × LAI) (R2 = 0.88) (3)

The value for LWAI was  calculated using Eq. (2),  based on the previ-
ous research of Dabrowska-Zielinska et al. (2007).  Finally, the value
for the biomass was calculated indirectly using Eq. (3),  which was
obtained by long-term observation of one maize field during the
entire growing season of maize in this area (Fig. 2). The biomass
consisted of the dry weight of leaves, stems, and roots.

Temperature, precipitation, and humidity data were recorded
hourly using nearby weather stations (Table 2). There was almost
no wind during those days. Unfortunately, soil moisture informa-
tion was not collected from these plots during the study period.
However, measurements in this area showed that the maize field

soil was  often dry during this period. The volumetric water content
was obtained from long-term observation of the maize field using
a TDR instrument (HydroSense, CAMPBELL), and the results were
∼10% in 5 cm,  ∼12% in 10 cm,  and ∼15% in 20 cm.

LWAI LAD CC LWC

0.57 32 39.43 0.46
2.15 62 57.80 0.65
1.27 46.28 48.9 0.57
0.42 6.5 4.66 0.05
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Fig. 2. Variation of height, LAI and biomass observed in one maize plot of this area
(unit: height, cm;  LAI, 0.01 m2/m2; biomass, 10 g/m2).

Table 2
Weather conditions during the in situ field investigation and the dates the images
were acquired at weather stations near the test site.

Date Temperature at 2 m
height (◦C)

Precipitation per
24 h (mm)

Humidity (%)

July 16, 2010 24.1 0 85
July  17, 2010 24.8 2.6 80.5
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July  18, 2010 25.2 0 79.5
July  20, 2010 24.3 0 77.5
July  25, 2010 27.6 0 78.5

.2. Satellite data process

Two satellite images were used in this experiment: a multispec-
ral image (HJ-1) collected on July 20, 2010 and a RADARSAT-2
mage collected on July 25, 2010 (Table 3).

The HJ-1 image (path 4, row 64), which covered the entire
uailai test site, was provided by the China Center for Resources
atellite Data and Application (CRSDA); the image was acquired at

 solar zenith angle of 64.15◦. Radiometric corrections were made
sing coefficients provided with the image (e.g., gains and offsets).
hen MOTRAN 4 model, which is embedded in the ENVI/FLAASH
odule, was applied for atmosphere correction. The input parame-

ers were set based on the location, sensor type and ground weather
onditions observed on the day the image was acquired. Then, the
urface reflectance of the HJ-1 image was derived. Based on the
round control points selected from the registered SPOT image,
he HJ-1 image was geometrically corrected to improve the accu-
acy of pixel registration to within one pixel (30 m).  Each plot was

orrected by approximately ∼7–9 pixels to match the ground mea-
urements.

The RADARSAT-2 fine-pol single-look complex (SLC) image was
cquired on July 25, 2010. It had 50 km × 50 km swaths with a

able 3
etailed information regarding the two satellite images used in the study.

Spectral region (�m) Spatial
resolution (m)

HJ-1
B1: 0.43–0.52B2: 0.52–0.60B3: 0.63–0.69B4: 0.76–0.90 30

Beam  mode Resolution range × azimuth (m)  

RADARSAT-2
Fine quad-pol (HH, HV, VH, VV) 5.2 × 7.6 
bservation and Geoinformation 24 (2013) 1–8 3

mean incidence angle of 37◦ in ascending passes. The SAR image
was radiometrically calibrated to obtain the linear radar backscat-
ter coefficient (�0) transformed from the digital number (DN)
(Macdonald, 2008). To compensate for speckle noise, the boxcar
filter was applied to replace the central pixel of a moving window
(3 × 3 pixels) with the average value for the pixels in the window.
This replacement was effective in reducing the speckle noise in
homogeneous areas and preserving the mean value (Johnstone and
Raimondo, 2004; Lee and Pottier, 2009). The mean backscattering
coefficients were calculated from the calibrated SAR image by aver-
aging the linear radar backscatter coefficient (�0) of all pixels within
the field. For each plot, there were ∼200 pixels participating within
one average. The image was then rectified using a preprocessed
SPOT image with a root mean square error of ∼1 pixel. The terrain
of the Huailaitest site considered in this study is comparatively flat;
thus, the digital elevation model was not used in the rectification.
The pixel size of the rectified image was  similar to the pixel size of
the original image to avoid losing or duplicating pixels.

3. Methods

In the first stage of this research, the relationship between the
features of the satellite images and several measurements of plant
variables (e.g., LAI and height) was examined using correlation
analysis. The features of the satellite image included the reflectance
and VIs of HJ-1 and the backscattering coefficients of RADARSAT-
2. The aim of this study was  to explore the sensitivity of the HJ-1
and RADARSAT-2 satellite sensors to the architecture parameters
of maize. The advantages and limitations of each sensor were then
analyzed based on ground measurement data. Freeman–Durden
three-component decomposition (Freeman and Durden, 2002) was
carried out to analyze the scattering contribution from the differ-
ent maize components, in addition to the correlation between these
three-components and the measured plant variables.

4. Results

4.1. Correlation analysis between reflectance and plant variables

It has been shown that reflectance at different wavelengths is
related to the architecture parameters of vegetation crowns and
other biochemical features (Jacquemoud and Baret, 1990; Daughtry
et al., 2000). Thus, the correlation coefficients for LAI, height,
biomass, and LWAI were calculated for all of the reflectance bands
in the HJ-1 image. There was  a negative correlation coefficient
(r = ∼−0.6) between these parameters in the visible-light region,
whereas there was a positive correlation (r = ∼0.5) between these
variables in the near-infrared region.

However, it has also been shown that different satellites exhibit

different sensitivities. Therefore, the correlation between the veg-
etation parameters and other VIs—including the Ratio Vegetation
Index (RVI) (Jordan, 1969), the Normalized Difference Vegetation
Index (NDVI) (Tucker, 1979), and the Enhanced Vegetation Index

Orbit altitude
(km)

Swath (km) Date

649 360 July 20, 2010

Mean incidence angle Pass Date

37 Ascend July 25, 2010
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Fig. 3. Relationships between the vegetation determined indices using an image
from  HJ-1 and maize variables (LAI, Leaf Area Index; height, total biomass; LWAI, Leaf
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relation coefficients, the HV-related polarization ratios provided a
small advantage over HH/VV. This advantage may  be due to the fact
that cross-polarization is more related to volume scattering from
the plant canopy, and co-polarization is related to double-bounce
ater Area Index; LAD, Leaf Area Density; CC, Chlorophyll Content; LWC, Leaf Water
ontent) during this experiment (RVI, Ratio Vegetation Index; NDVI, Normalized
ifference Vegetation Index; EVI, Enhanced Vegetation Index).

EVI)(Huete et al., 1997)—were analyzed to reduce the absolute
eflectance calibration error. For each plot, the VI value of each pixel
as calculated from the reflectance of the HJ-1 image; then, all of

he VI pixel values were averaged to correlate with the vegetation
arameters. The positive correlation coefficients were found using
he RVI for the LAI (r = 0.47, SD = 0.04), height (r = 0.59, SD = 0.13),
iomass (r = 0.59, SD = 0.13) and LWAI (r = 0.54, SD = 0.14) variables.
he NDVI and EVI presented similar correlation coefficients for
hese variables (Fig. 3).

In the analysis, the correlation between the plant growth
ariables themselves was carefully considered. The correlation
oefficient between LAI and height was 0.92; it was 0.96 between
AI and biomass, 0.99 between LAI and LWAI, 0.8 between LAI and
C, and 0.65 between LAI and LWC. The LAI, height, biomass and
WAI mostly reflected the variation in canopy architecture. The
C and LWC  reflected the leaf scale information. Thus, the high
orrelations between the reflectance characteristics and the plant
ariables suggested that multispectral HJ-1 was much more sensi-
ive to canopy architecture than to the leaf scale parameters, which
ad been proved by many preceding studies using other multispec-
ral satellites similar to HJ-1 (Lu et al., 2005; Dash et al., 2010).

.2. Correlation analysis between backscattering coefficients and
lant variables

Because the backscattering coefficients were related to the
hysical parameters of the target, such as the amount and structure
f scattering elements and their dielectric constants, a correlation
etween plant variables and backscattering coefficients should be
eaningful as long as the biological variables (e.g., LAI, biomass,

nd canopy height) are strongly linked to those physical param-
ters. Here, the original linear representation of backscattering
oefficient, not the logarithm conversion, was used for convenient
nalysis and comparison.

For the LAI, the highest correlation coefficient was found for
he cross-polarization HV (r = 0.67, SD = 0.003) (Fig. 4). The co-
olarization involving HH and VV was less well correlated (r = 0.27,
D = 0.02 and r = 0.32, SD = 0.02 for HH and VV, respectively). Simi-
ar trends were found for other parameters, such as canopy height,

iomass and LWAI. Inoue et al. (2002) found a very high corre-

ation between the C-band backscattering at a cross-polarization
ncidence angle of 35◦ with LAI for rice in an experimental paddy
eld (r2 = 0.96–0.97) (Tsukuba, Japan) using a multi-frequency
Fig. 4. Relationships between backscattering coefficients of RADARSAT-2 and maize
variables. The HH, HV, VH, and VV represent the four different linear polarizations
types.

polarimetric scatterometer. However, there were many more
factors—aside from the vegetation variables—that affected the
satellite SAR signals more than the ground scatterometer. Similar to
the case of HJ-1, a low correlation was found between the backscat-
tering coefficients and leaf level characteristics, such as CC and LWC.
This low correlation may  be due to the fact that at a specific growth
stage, the concentration of these parameters showed little varia-
tion for the maize (Table 1), and the variation of the backscattering
coefficients was mainly caused by the structure characteristics of
the vegetation canopy.

In this analysis, several backscattering polarization ratios were
also studied using the RADARSAT-2 data, including VV/HH, HV/HH,
and HV/VV (Fig. 5). Because the absolute values of HV and VH
were similar for the SAR data, only HV was used to represent
cross-polarization. It was found that although there was some rela-
tionship between these polarization ratios and plant variables, no
significant correlation was  found between the HH/VV or HV-related
ratios. The VV/HH ratio showed little change with increasing LAI
in our experiment, and this phenomenon was  coincident with the
following simulation (Blaes et al., 2006). When comparing the cor-
Fig. 5. Relationships between backscattering polarization ratio of RADARSAT-2 and
plant variables. VV/HH, HV/HH, and HV/VV represent the three different polarization
ratios.
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Here, the commonly used multi-spectral optical VIs, such as RVI,
NDVI, and EVI (Table 4), were multiplied by the cross-polarization
backscattering coefficient of SAR. Then, the new VIs were obtained
as the formulae (4)–(6),  where HV represents cross-polarization

Table 4
Optical multispectral vegetation indices used in this study.
ig. 6. Relationships between three components of Freeman–Durden decompositi
ounce scattering and volume scattering, respectively.

nd single scattering from the stem and ground of maize plants.
he LAD could reflect the orientation distributions of the struc-
ural elements of maize. With an increase in LAD (i.e., the growth of

aize), the proportion of the vertical elements decreased and the
V/HH index also decreased. This phenomenon was also verified
y the scattering simulation of a Scots pine shoot (Manninen et al.,
005a). Because the leaves of the maize were often curled up dur-

ng a specific growth stage, the VV/HH index did not reveal higher
orrelations such as those for the Scots pine.

.3. Integrated application both HJ-1 and RADARSAT-2

Based on the analysis above, the HJ-1 and RADARSAT-2 satel-
ites were both found to be sensitive to the architecture-related
ariables of maize near the heading stage (Figs. 3–5). However,
or dense maize coverage, a saturation phenomenon occurred in
he LAI estimation using optical VIs at a special saturation point
Haboudane et al., 2004; Tang et al., 2007).

This phenomenon may  be related to the lower sensitivity of the
ear-infrared band in dense vegetation coverage area. In contrast,
adar had an advantage in monitoring dense vegetation coverage
ecause of its penetration and sensitivity to plant structure. How-
ver, radar backscatter was complex for different polarizations,
hich included ground surface scatter, double-bounce scatter, and

olume scatter from different parts of the plant. In this study,
reeman–Durden three-component decomposition showed that
olume scattering was the main source of vegetation backscatter-
ng, and double-bounce scattering only contributed a small amount
o the total scattering (Fig. 6). Usually, the largest contribution of
olume scattering mainly comes from the crown, the layer between
he bottom where the first green leaf exists and the top leaf of maize.
lthough the SAR signal was heavily affected by soil moisture dur-

ng the early stage of crop growth, the effect was weakened by

ense vegetation coverage (stem elongation, mean LAI = 2.2, mean
eight = 1.2) (Blaes et al., 2006). Other studies have also found that,

or crops with LAI > 1.0, the sensitivity of the SAR signal to surface
oil moisture content is substantially reduced (Moran et al., 2002).
 LAI, height of maize. F0dd, Fdbl and Fvol represent the single scattering, double-

In this study, volume scattering was strongly correlated with the
crown structure parameters, such as LAI and height, compared to
the other two  scattering types (Fig. 6). In fact, the volume scat-
tering was also strongly related to leaf parameters, such as leaf
density, leaf size, and thickness (Ulaby et al., 1990). In this context,
volume scattering could be used as a good indicator to describe
the growth status of a crop when the dielectric properties of the
target are relatively constant. In addition, the backscattering of
cross-polarization was strongly related to the volume scattering
(Ulaby et al., 1986), and in the Freeman–Durden decomposition,
the cross-backscattering was  directly proportional to the volume
scattering (Fig. 6).

As shown above, both multi-spectral and SAR satellite data had
advantages in monitoring vegetation growth. The multi-spectral
optical sensors could easily distinguish the green leaves and their
distribution, which concern the photosynthesis of plant. More-
over, the multispectral VIs were widely used for fine vegetation
classification and biophysical and biochemical parameter inver-
sion. However, the saturation problem would become much more
obvious for structure parameter inversion with crop growth. In
contrast, microwaves of the appropriate wavelength and mode
could penetrate the vegetation crown layer and be sensitive to
plant structure. Inspired by the VIs of optical remote sensing, the
microwave-modified VIs were designed to overcome the short-
comings of optical VIs for dense vegetation coverage.
VI Formula

RVI RVI = RNir/RRed

NDVI NDVI = (RNir − RRed)/(RNir + RRed)
EVI EVI = 2.5 × (RNir − RRed)/(1 + RNir + 6 × RRed − 7.5 × RBlue)
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Fig. 7. Comparison between the original multispectral VI

nd R represents reflectance, with the subscript indicating the band.
or the integrated VIs, the optical parts could distinguish the green
eaves and basically estimate their amount, and the SAR parts could

easure the backscatter from the crown layer. To validate those
Is’ performance for structure parameter inversion, a correlation
nalysis was carried out.

RVI = HV × RNir

RRed
(4)

NDVI = HV × RNir − RRed

RNir + RRed
(5)

EVI = HV × 2.5 × (RNir − RRed)
1 + RNir + 6 × RRed − 7.5 × RBlue

(6)

The comparison showed higher correlation coefficients than
hose of the optically determined VIs (Fig. 7). The highest correla-
ion coefficient (r = 0.72, SD = 0.02) was found for the relationship
etween LAI and MNDVI. Compared to that indicated by the
nalysis above, this correlation increased for the structure-related

arameters, especially when they were compared to the original
VI, NDVI, and EVI. Regardless of the LAI, height or biomass of
aize, all of the new VIs performed better than the original

nes. Moreover, regardless of the correlation coefficients or the
0 100 0 200 0 300 0 400 0 500 0 600 0 700 0

Biomass( g/m2)

he new integrated VIs for structure parameter inversion.

confidence level, the new VIs verified their potential for parameter
estimation. This comparison showed that the new VIs could offer
a simple and efficient way  to integrate data from two  different
satellites.

5. Discussion

This study mainly focused on better understanding the role
of the structure-related parameters of maize in their interaction
with multispectral and SAR data. Compared to the leaf parame-
ters, such as LAD, LWC  and CC, multispectral HJ-1 was  sensitive
to the canopy characteristics of maize. However, relatively poor
correlation was found between HJ-1 reflectance and the canopy
parameters in the area with dense vegetation coverage. Similarly,
the vegetation indices RVI, NDVI, and EVI were also not very effec-
tive for maize canopy parameter inversion in the heading stage due
to near-infrared reflectance saturation.

In contrast, SAR was  able to penetrate the dense vegetation
coverage; therefore, theoretically, it could be used to estimate

these structure parameters. However, there was a large dif-
ference between different polarization types and polarization
combination. The cross-polarization was found to be directly
related to the crown volume scattering intensity, which was
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ore highly correlated to maize structure parameters than co-
olarization for maize during same growing stage. Although
elevant studies have found that polarization ratios, such as VV/HH
nd HV/HH, are suitable for LAI estimation for some crops and
orests (Manninen et al., 2005b; Dente et al., 2008; Li et al., 2009),

 weak correlation was found in this study. None of these ratios
evealed advantages better than that of the cross-polarization. The
urly leaves of maize were considered the main reason during the
pecific growth stage, and the incidence angle of the SAR sensor
lso affected the performance (Manninen et al., 2007).

Due to the dense coverage of maize near the heading stage,
he near-infrared reflectance was not strongly sensitive to the

aize variables. However, the absorption feature of visible light
as still obvious in the thriving stage. Constructed using both
ear-infrared and visible-light bands, the original multispectral
Is indicated advantages in maize growth monitoring. However,

heir efficiency was affected by the saturation phenomenon in
ense vegetation coverage area; therefore, the active microwave
ensing technique (SAR) was introduced. The Freeman–Durden
hree-component decomposition indicated that volume scattering
ominated the SAR total backscattering interaction with maize, and

t was directly related to the leaf parameters in high-coverage vege-
ation (Karam et al., 1992). Thus, cross-polarization was  introduced
n to the integrated application with multispectral data in this anal-
sis. The optical-microwave-modified VIs were designed using the
riginal VIs multiplied by the HV cross-polarization. Comparison
howed that the new VIs had advantages in structure parameter
stimation in areas of dense vegetation coverage. The coefficient
f the determination reached ∼ 0.7 for the relationship between
he modified VIs and LAI. The better performance of the modified
Is was attributed to the stronger penetration ability of the cross-
olarization of SAR. Among the three modified VIs, MNDVI had the
ighest potential for the estimation of structure-related parame-
ers, while the MNDVI and MEVI were also valuable in the inversion
stimation. The determination coefficient increased, and the stand
rror greatly decreased (Fig. 7).

In fact, there are other approaches that combine optical data
ith SAR to estimate vegetation parameters. Usually, optical and

AR data are used separately. Then, the results from both sensors
re combined to obtain the final results. For example, the recip-
ocal of the standard deviation of separate estimation is usually
sed as a weighting factor in synergistic applications (Clevers and
anleeuwen, 1996; Manninen et al., 2005a). Often, the optical or
AR data only offer an initial interpretation, and other data are used
or more in-depth investigation (Moran et al., 2002). In this study,
ew VIs were designed based on the optical reflectance and SAR
ackscatter mechanism. This approach represents a novel synergis-
ic way of effectively estimating vegetation structural parameters.

Although the new VIs seem better than the original ones, fur-
her tests and validation are needed before their wide application.

odel simulation and field experiments are necessary, and many
ore important factors should be carefully considered in this pro-

ess. For example, the incidence angle of SAR strongly affected the
ackscattering of vegetation and the L band of SAR was  reported
o be much more sensitive to biomass than the C band (Paloscia,
998). Moreover, SAR backscattering was strongly affected by pre-
ipitation, and incidentally, there was 2.6 mm of precipitation on
he night of July 17 during the collection of field data. These facts

ay  introduce some uncertainties in the sampling of water-related
arameters.
. Conclusion

The new VIs determined by both multispectral HJ-1 and
ADARSAT-2 satellites were found to correlate well with the
bservation and Geoinformation 24 (2013) 1–8 7

structural parameters of maize near the heading stage, such as LAI
and height. First, the interaction of multispectral and microwave
backscattering signatures with maize canopy growth variables
were analyzed. The comparative analysis clearly demonstrated the
difference in sensitivity of the two  sets of observational data to
maize growth variables. For the HJ-1 data, the visible-light bands
correlated well with these variables for light absorption during the
maize growth stage. For the RADARSAT-2 data, there was  an explicit
correlation between the cross-polarization and these parameters.
Based on the reflectance and microwave backscatter mechanism,
the optical- and microwave-integrated indices were designed to
overcome the disadvantage of the saturation of the original opti-
cal VIs. In fact, the validation showed that the new VIs performed
better. The integrated VIs provided a good alternative to using only
the optical or microwave method and presented interesting and
feasible prospects.

It has been reported that many more satellite sensors, including
multispectral and SAR, will be launched in the future. Thus, it will be
possible to obtain two types of data on the same day. In fact, there
are many passive and active sensors that are deployed in the same
platform, such as ENVISAT (ESA). Therefore, the new VIs presented
will probably play an important role in vegetation monitoring. This
case study may  be valuable in guiding further research on quanti-
fying the different responses of optical reflectance and microwave
backscatter to vegetation variables. Certainly, much work, such as
model simulation and field experiments, should be conducted for
proper validation and application.
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