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In this article, land surface temperature (LST) and sensible heat flux (H) data assimila-
tion schemes were developed separately using the ensemble Kalman filter (EnKF) and
the common land model (CoLM). Surface measurements of ground temperature, H , and
latent heat flux (LE) collected at the Yucheng (longitude: 116◦ 36′ E; latitude: 36◦ 57′ N)
and Arou (longitude: 100◦ 27′ E; latitude: 38◦ 02′ N) experimental stations were com-
pared with the predictions by assimilating different observation sources into the CoLM.
The results showed that both LST and H data assimilation schemes could improve the
estimation of ground temperature and H . The root mean square error (RMSE) com-
pared between the predictions and in situ measurements decreased more significantly
with the assimilation of values of H measured by a large aperture scintillometer (LAS).
Assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) LST only
slightly improved the predictions of H and ground temperature. Daytime to night-time
comparison results using both assimilation schemes also indicated that accurately quan-
tifying model, prediction, and observation error would improve the efficiency of the
assimilation systems. The newly developed land data assimilation schemes have proved
to be a feasible and practical method to improve the predictions of heat fluxes and
ground temperature from CoLM. Moreover, integrating multisource data (LAS and
MODIS LST) simultaneously into the land surface model is believed to result in an effi-
cient and robust way to improve the accuracy of model predictions from a theoretical
point of view.

1. Introduction

Latent (LE) and sensible (H) heat fluxes are two key variables in the water and energy
balance of land surface processes and in climate model forecasts (Pitman 2003). The
estimation of energy partitioning into H and LE has attracted great attention in the
fields of meteorology, oceanography, hydrology, and agriculture (Courault, Seguin, and
Olioso 2005). Land surface temperature (LST) links the surface fluxes and soil water
content through the energy and water balance in the soil–vegetation–atmosphere sys-
tem (Corbari et al. 2010), and land surface models analyse the heat fluxes and LST
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in a physical framework. Simplification of various land surface models in simulating
soil–vegetation–atmosphere, water, and energy transfer is likely to bring about some uncer-
tainties in estimating LE and H . Data assimilation by fusing observations into the model
may help reduce the uncertainties in the simulations (Crosson et al. 2002). In the data assim-
ilation process, the uncertainties of the land surface model and observations can be fully
considered, and the state variables are adjusted with the observations being assimilated.
Integrating remotely sensed data into a land surface model by using a data assimilation
technique has become a promising method for improving the predictions of LE and H
(Boni, Entekhabi, and Castelli 2001; Caparrini, Castelli, and Entekhabi 2004).

The Ensemble Kalman filter (EnKF) (Evensen 1994) is one of the most popular data
assimilation techniques due to its simple conceptual formulation and relative ease of use.
The variational method is another widely applied data assimilation method (Meng et al.
2009; Tian et al. 2009).

However, until now most studies have primarily focused on the assimilation of soil
moisture content (Reichle et al. 2002; Kumar et al. 2008) in the land data assimilation
system to explore its influence on the heat fluxes, LE, and H . Direct assimilation of soil
temperature and heat fluxes would more efficiently improve LE and H predictions. A few
examples can be found for LE and H assimilations (Schuurmans et al., 2003; Pipunic,
Walker, and Western 2008; Williams et al. 2009), but the synthetic observations used
in the assimilation are generally derived from model emulations (Pipunic, Walker, and
Western 2008). Moderate Resolution Imaging Spectroradiometer (MODIS) LST products
(e.g. MOD11A1) are often assimilated to improve the prediction of land surface variables,
including heat fluxes, by adjusting the parameters or the initial state variables (Huang et al.
2008; Renzullo et al. 2008; Li et al. 2009; Xu et al. 2011b), but the improvement of the
model could be limited because of the low temporal resolution of LST data (Xu et al.
2011a).

A land surface model generally runs at the scale of several to tens of kilometres. In pre-
vious land data assimilations, the ground observations, such as soil water content from field
experiment, represented only measurements at the point spatial scale (Zhang, Li, and Qiu
2011). The newly developed large aperture scintillometer (LAS) captures the sensible heat
flux averaged over horizontal distances equivalent to the grid size of the land surface model
and remote-sensing images (Kohsiek et al. 2002). However, in the past LAS data assimi-
lation has been rarely considered in the land data assimilation. This article presents a data
assimilation scheme for energy partitioning by integrating MODIS LST products and LAS-
measured H into the land surface model. The assimilation results of land surface variables,
including LE, H , and ground temperature, are validated with the in situ measurements.

2. Site description and data collection

The data measured for the assimilation experiments were collected at two locations in
China: Yucheng Comprehensive Experimental Station (YC) at Yucheng City, Shandong
Province, and Arou station (AR) located in Qinghai Province. Table 1 summarizes the
attributes of both stations.

The involved meteorological forcing variables include atmospheric pressure, air
temperature, wind speed, specific humidity, precipitation, incident solar radiation, and
downward longwave radiation. These variables together with ground flux measurements,
including the ground temperature, were acquired routinely every 30 min by automatic
weather station at both stations.
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Table 1. Attributes of the Yucheng and Arou sites.

Station
name

Latitude
(◦N)

Longitude
(◦E)

Elevation
(m) Land cover Soil type

Canopy height
(m)

Yucheng 36.93 116.60 28 Crop Sandy loam 0.78
Arou 38.04 100.46 3033 grass Clay loam 0.2–0.3

(approximately)

MODIS (Terra and Aqua) data/products used in this study are the daily 1 km
LST/emissivity (MOD11A1 for Terra, MYD11A1 for Aqua) products that can be
retrieved from Land Processes Distributed Active Archive Center (https://lpdaac.usgs.
gov/). MODIS/Terra data acquired at 10:30 am were used for assimilations at Yucheng,
whereas at Arou, both Terra and Aqua MODIS data at daytime and night-time were applied.
All of the Terra (Aqua) MODIS products required further processing with the MODIS
Reprojection Tool (MRT). LASs were installed along the northeast–southwest direction to
measure H in late April 2009 at Yucheng and in March 2008 at Arou. The length path
between the transmitter and receiver of the LAS was 1240 m at Yucheng and 2390 m at
Arou. The 30 min averaged H was derived from the post-processing of ten 30 min LAS-
measured signals with the support of near-surface meteorological variables. The main land
cover at the zone between transmitter and receiver is agricultural crop at Yucheng and
grassland at Arou. When the vegetation flourishes and underlying surface is homogenous,
H and LE flux measured by eddy covariance flux system (EC) as well as ground surface
temperature observations were used to validate the prediction results with assimilation.

3. Overview of land surface model and data assimilation method

The chosen data assimilation technique is the widely applied EnKF (Evensen 1994; Li et al.
2007), and the land surface model used in this work is the common land model (CoLM)
(Dai, Zeng, and Dickinson 2001). Detailed descriptions of the EnKF scheme and the CoLM
have been given in a number of studies (Dai, Zeng, and Dickinson 2001; Dai et al. 2003;
Evensen 2003).

3.1. EnKF method

EnKF shows superior performance compared to the Kalman filter and the extended Kalman
filter (Reichle et al. 2002). EnKF can be applied in a non-linear system without calcu-
lating the tangent linear model. The core of the assimilation algorithm in this article is
summarized as follows for the implementation of EnKF.

In the EnKF data assimilation system, CoLM is described according to Equation (1) as
a ‘black box’ system:

Xf
t = M(X0

t–1, αt, βt), (1)

where Xf
t represents the forecast CoLM state variables at time t; M(−) represents the model

operator; when no observation exists, X0
t–1 = Xf

t–1; when the observation (MODIS LST or
LAS sensible heat flux) exists, X0

t–1 = Xa
t–1; Xa

t represents the analysed state variables at
time t; αt represents the forcing data at time t; and βt represents the model parameters at
time t.
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The update of model state, i.e. the analysis field, can be computed as

Xa
t = Xf

t + Kt(Yt − O (Xf
t)), (2)

where Xf
t = [Xf

1,t, Xf
2,t, · · · , Xf

N,t], with Xf
i,t(i = 1, 2, . . . N) being the forecast state variable

of the ith member at time t; N is the number of ensemble members; Yt is the observation
at time t; O is the observation operator that projects the state vector Xf

t into the observation
space (see Equation (3)); Kt is the Kalman gain matrix at time t, which is controlled by
O, Pf

t, and Rt (see Equation (4)); and Pf
t is the error covariance of the forecast model state

variables (see Equation (5)). The specified settings of O, ε, Pf
t are introduced in Section 4:

Yt = O (Xf
t) + ε, (3)

Kt = Pf
tO

T (OPf
tO

T + Rt)
−1, (4)

Pf
t = 1

N − 1

N∑
i=1

(Xf
i,t − X

f
t)(X

f
i,t − X

f
t)

T , (5)

where ε is the observation error that conforms to a Gaussian distribution with a zero mean
and a covariance matrix Rt; X

f
t is the mean of all the ensemble members of Xf

t; and the
superscript ‘T’ represents the transpose of the variables.

3.2. Common land model (CoLM)

CoLM has 10 unevenly spaced vertical soil layers and up to five snow layers (depending
on snow depth). The dynamics of soil temperature is expressed with the numerical heat
diffusion equation for a one-dimensional vertical column (see the following equation):

[cj�zj]
Tt+1

j − Tt
j

�t
= w[Ft

j − Ft
j−1] + (1 − w)[Ft+1

j − Ft+1
j−1 ], (6)

where Tt
j is the layer-averaged temperature (K) in layer j at time t; cj and �zj are the volu-

metric soil heat capacity (J m–3 K–1) and soil layer thickness (m) in layer j, respectively; w
is the weighting coefficient in the time domain (w = 0.5); and Ft

j is the heat flux across the
interface between layer j and j + 1 at time t and can be computed as follows.

For an interior interface (j = s + 2,· · · , m – 1, where s and m are the number of snow
layers (negative value) and maximum number of soil layers, respectively):

Ft
j = λ(zh,j)

Tt
j+1 − Tt

j

zj+1 − zj
, (7)

where λ(zh,j) is the thermal conductivity at the interface zh,j (W m–1 K–1), and zj is the soil
depth in the layer j.

For the boundary layer and surface boundary:

Fm = 0, Fs = wFt
s + (1 − w)Ft+1

s = −[Q + ∂Q/∂Ts+1 × (Tt
s − Tt

s+1)], (8)
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Q = Rn,g − Hg − LEg, (9)

where Rn,g is the net radiation absorbed by ground surface; Hg and LEg represent sensible
heat flux and latent heat flux at the ground surface, respectively; and Q is the net energy
flux in the soil surface.

4. Results and discussion

To investigate the feasibility and the performance of the assimilation system in predicting H
and LE, we performed some point-scale experiments using the in situ observations of LAS-
measured H and MODIS LST products acquired from 1 April to 30 July 2009 at YC and
from 1 March to 30 July 2008 at AR. The CoLM and assimilation system ran from January
to July 2009 at YC and from January to July 2008 at AR, respectively. In this study, because
of the restriction of the available observations, we mainly compare the predictions from
22 May to 2 June 2009 at YC and from 3 to 12 June 2008 at AR with ground measurements
to test the assimilation schemes.

4.1. Ensemble generation

The generation of the ensembles in the EnKF data assimilation scheme is a critical issue
because the ensembles embody some uncertainties in model prediction, but disturbing
the forcing climate data and the initial state variables to drive the model overcomes this
problem (Pauwels et al. 2007). In this work, ensembles were generated by adding random
perturbations with zero mean and certain standard deviation to the spin-up initial soil tem-
perature values (the predicted soil temperature by model after the model reached a state of
statistical equilibrium under the applied forcing which maybe will take much time). The
standard deviation of the random perturbation was set to 0.2 K. The initial soil moisture
and temperature values originated from the ground observations.

4.2. Configuration of parameters in the assimilation scheme

Model errors related to the prediction of soil temperature in the 10 layers were specified by
analysing the differences between the simulations and observations. Considering that the
model errors would decrease with the assimilation, we specified model errors as smaller
static values. Here, the soil temperature error induced by the model structure was limited
within ±2 K, and measurement noise was regarded as invariable. For the sensible heat
flux measured by LAS, the error was assumed to be less than 10 W m–2 (Tang, Li, and
Tang 2010); for the MODIS LST, uncertainty was less than 1 K in the range from 263 to
322 K (Wan et al. 2004). All errors described above were produced by adding a zero mean
Gaussian distributed random number to the corresponding variables.

To compare the results of assimilating data from different sources, two scenarios were
designed. When assimilating H , all of the calculations followed the work of Pipunic,
Walker, and Western (2008) in which the observation operator does not need an explicit
solution. The error of the predicted H was limited within ±10 W m–2 at Yucheng and
±15 W m–2 at Arou. As for the remotely sensed MODIS LST data, which are essentially
a hybrid of canopy and ground temperature, the observation operator was constructed by
linearly regressing ground temperature observations to MODIS LST (Huang et al. 2008).
The regression formula shown in Equation (10), which was derived for the MODIS sensor
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passing at 10:30 am (local time), was used for Yucheng. For Arou, the three regression
functions shown in Equation (11) were developed for MOD11A1 daytime and night-time
data from the Terra satellite and MYD11A1 data from Aqua, respectively.

Ts = 0.9581Tg + 13.509, (10)

Ts =
{ 1.002Tg − 11.91 MOD11A1 night − time, 2008,

1.028Tg − 2.40 MOD11A1 daytime, 2008,
1.229Tg − 69.63 MYD11A1, 2008,

(11)

where Ts and Tg are the MODIS LST and ground temperature, respectively.

4.3. Impact of the number of ensemble members

The number of ensemble members is one of the most important parameters in EnKF data
assimilation. To test the sensitivity of the predictions to the ensemble size, the root mean
square error (RMSE, as shown in Equation (12)) in the comparison of the three variables
(H , LE, and LST) in the data assimilation runs was intercompared for the ensemble sizes
of 10, 20, 30, 50, and 100 members (Figures 1–4). The RMSE with 0 ensembles in these
figures was derived from the comparison between the model prediction before assimilation
and observation for reference:

RMSE =
[

1

n

n∑
i=1

(Pi − Oi)
2

]1/2

, (12)
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Figure 1. Impact of the ensemble size on the assimilation of MODIS LST data at Yucheng. (a) For
sensible latent flux, (b) for latent heat flux, and (c) for ground temperature.
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Figure 2. Impact of the ensemble size on the assimilation of LAS-measured H data at Yucheng. (a)
For sensible latent flux, (b) for latent heat flux, and (c) for ground temperature.

where n is the number of observations, and Pi and Oi are the variables predicted by the
model and the observed variables, respectively.

Obtaining a satisfactory estimate with the minimum number of ensemble members was
used as the criterion for determining the ensemble size. Figure 1 shows that the RMSE was
the lowest for Yucheng when the ensemble size was 30 with the assimilation of the MODIS
LST data. For the assimilation of the LAS-measured H at Yucheng (Figure 2), the ensemble
size of 10 was sufficient. A large number of ensemble members increase the computational
burden (see Figure 3 for the ensemble size equal to 100). The optimal number of ensemble
members for the MODIS LST data assimilation experiment at Arou was 20. Given that
the decline of the RMSE was minimal for members greater than 10 with the assimilation
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Figure 3. Impact of the ensemble size on the assimilation of MODIS LST data at Arou. (a) For
sensible latent flux and (b) for ground temperature.
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Figure 4. Impact of the ensemble size on the assimilation of LAS-measured H data at Arou. (a) For
sensible latent flux and (b) for ground temperature.
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Figure 5. Comparisons of sensible heat flux measured by EC and LAS for day 175 of 2008 at Arou.

of LAS-measured H (Figure 4), an ensemble size of 10 was chosen for the assimilation
scheme at Arou.

H and LE measured by EC were not used to validate the assimilation results at Arou
because differences have been found in the sensible heat flux measured by LAS and EC
(Figure 5), which may be due to the energy imbalance of EC data, the heterogeneity of the
underlying surfaces, and the different footprints of LAS and EC (Liu et al. 2011). Instead,
H measured by LAS was compared with the assimilation results at Arou.

4.4. Comparisons of assimilating different data sources into CoLM

Sensible heat flux obtained from LAS was assimilated into the model in a 30 min time step.
MODIS LST was assimilated approximately once every 2 days at Yucheng and twice daily
on average at Arou. A comparison of all the assimilation results during the 10 day period,
from 24 May to 2 June at Yucheng and from 3 to 12 June at Arou, is given in Figures 6 and
7, respectively.
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Figure 6. Comparisons of (i) sensible heat flux (H), (ii) latent heat flux (LE), and (iii) ground tem-
perature with ground measurements at Yucheng from 24 May to 2 June 2009 (a) for simulation, (b)
for assimilation of MODIS LST, and (c) for assimilation of LAS-measured H.

As shown in Figures 6 and 7, the assimilation of the two data source types could improve
the estimations of H , LE, and ground temperature at both sites. The assimilation of LAS-
measured H yielded better results than the assimilation of MODIS LST data, which may
be due to the assimilation frequency. Additionally, the RMSE between model simulations
and in situ measurements decreased with assimilation despite overestimating the predicted
H and ground temperature. At Arou, there was a margin circle among the scatter plots of
ground temperature: as shown in Figure 7, the margin area shrunk from (a) to (c).

4.5. Assimilation of LAS-measured H

Figure 8 shows the 10 day results for ground temperature, H and LE, by assimilating
LAS-measured H at Yucheng from 24 May to 2 June 2009. As shown in this figure, the
assimilation curves of the three variables were closer to the observed values than the simu-
lation results. The predicted ground temperature was greater than the observed temperature.
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Figure 7. Comparisons of (i) sensible heat flux (H) and (ii) ground temperature with ground mea-
surements at Arou from 3 to 12 June 2008 (a) for simulation, (b) for assimilation of MODIS LST,
and (c) for assimilation of LAS-measured H.
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Figure 8. Comparisons of surface observations with estimates from the simulation and LAS-
measured H data assimilation for sensible heat flux, latent heat flux, and ground temperature at
Yucheng, from 24 May (Day of year = 144) to 2 June (Day of year = 153) 2009.
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Figure 9. Comparisons of surface observations with estimates from the simulation and LAS-
measured H data assimilation for sensible heat flux and ground temperature at Arou, from 3
(Day of year = 154) to 12 (Day of year = 163) June 2008.

After assimilation, the predicted ground temperatures were lower than the simulated results
and were close to the observed temperatures except for the underestimation that occurred
for the night-time temperatures on days 130–133 and 138. The underestimation in results
after assimilation indicates that the model error needs to be determined dynamically accord-
ing to the assimilation results in previous time periods because the initial values of state
variables are real-time adjusted following the assimilation.

At Arou, the 10 day assimilation results of ground temperature and H by assimilat-
ing LAS-measured H from 3 to 12 June 2008 are given in Figure 9. Overall, the CoLM
simulations have been overestimated greatly in the daytime at Arou. Improvement has been
shown in the comparison of ground temperature and sensible heat flux when LAS-measured
H and MODIS LST are assimilated. However, after assimilation, the estimation of the two
variables in the night-time was lower than the model simulation results, an effect of the
uniform setting of the model and the observation error for the whole day. Adjusting the
model or observation error may improve results in accordance with the work of Kumar and
Kaleita (2003).

4.6. Assimilation of MODIS LST

A time series of the surface variables obtained by assimilating MODIS LST products at
Yucheng from 24 May to 2 June 2009 is shown in Figure 10. For Arou, the correspond-
ing results from 3 to 12 June 2008 are shown in Figure 11. At both sites, the estimation
of ground temperature has significantly improved; the assimilation results follow the in
situ observations more closely than the simulation results. The assimilation of MODIS
LST does not, however, have a large influence on the predictions of the heat flux in this
scheme due to the influence of the frequency and quality of available satellite observations
on the performance of the assimilation scheme and the simplification of the observation
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Figure 10. Comparisons of surface observations with estimates from the simulation and MODIS
LST data assimilation for sensible heat flux, latent heat flux, and ground temperature at Yucheng,
from 24 May (Day of year = 144) to 2 June (Day of year = 153) 2009.
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Figure 11. Comparisons of surface observations with estimates from the simulation and MODIS
LST data assimilation for sensible heat flux and ground temperature at Arou, from 3 (Day of
year = 154) to 12 (Day of year = 163) June 2008.

operator as a linear regression relationship between the MODIS LST and the ground
temperature. Adding the soil water content to the assimilated variable will improve the esti-
mation of H and LE because soil moisture availability influences the estimation of LE in
the CoLM.
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5. Conclusions

In this article, we developed a land data assimilation system to improve the predictions of
soil surface temperature, sensible and latent heat fluxes. Different data sources (MODIS
LST and sensible heat flux data from LAS) were assimilated into the CoLM using the
EnKF technique. The data collected at two experiment stations were tested to evaluate
the performance of the assimilation system. Estimations of energy partitioning and ground
temperature after assimilation were compared to the model simulation results. The accuracy
of the predicted ground temperature and latent and sensible heat fluxes with assimilation
showed different variations. The assimilation results of H , LE, and ground temperature
were all improved compared with the simulations when the LAS-measured H data were
used, but only a slight improvement was found in the estimations with the assimilation of
MODIS LST.

Although this study clearly demonstrates that the assimilation of H measured by LAS
has the potential to improve the heat flux and soil temperature predictions, the results may
be further improved if the errors in daytime and night-time could be solved separately.
By contrast, the LAS-measured H assimilation influenced the model trajectory more sig-
nificantly than by assimilating MODIS LST. LE cannot be improved as well as H with
assimilation due to the model parameterization of LE. Adding the soil water content to the
assimilated variable will solve this problem in future research, and it is therefore required
to improve the land surface model. Additional validations at other sites are also needed.
In general, assimilating remotely sensed data or LAS data into a land surface model is a
practical way to improve the land surface process forecast. Furthermore, integrating mul-
tisource data (LAS, remote sensing, and ground experiments) simultaneously into the land
surface model may produce better results.
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