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Forest growing stock volume (GSV) is one of the most important indicators in the field
of forest resources investigation and monitoring. This article describes the application
of two different methods, the multiple stepwise regression (MSR) model and the back-
propagation neural network (BPNN), to retrieve forest GSV using Landsat Thematic
Mapper (TM) images and field data. The article describes the data used, the retrieval
methods adopted, and the results achieved. The results show that the surface reflec-
tance of six bands significantly correlated with forest GSV, as did six vegetation
indices, factors from principal component analysis and tasselled cap transformation,
and three terrain factors. Moreover, texture features including Band 1mean, Band 2mean,
and Band 3mean were highly correlated with forest GSV. An optimal MSR model that
included three factors was established for retrieving forest GSV using 53 remote-
sensing factors. Three factors were included in the model. Leave-one-out cross-valida-
tion demonstrated that the model worked well. Finally, BPNN was constructed and the
predicted result was highly consistent with measured forest GSV. In a comparison of
the retrieved results with the MSR model and BPNN, the MSR model was better at
quantitatively finding the correlation between each remote-sensing factor and forest
GSV, and a linear equation could be acquired. However, BPNN was better at predict-
ing forest GSV based on the field data. Additionally, the retrieved map of forest GSV
for the whole study area by BPNN was much more consistent with the Landsat TM
false-colour composite than that retrieved by the MSR model.

1. Introduction

Sustainable forest management requires a great deal of data in regard to describing and
quantifying forest variables. The retrieval of forest information has become increasingly
important in recent decades because of issues related to global climate change. The forest
growing stock volume (GSV) is one of the most important forest variables in the context
of forest management. GSV is a major predictor for assessing above-ground biomass
(Shvidenko et al. 2007) and is crucial for estimating the compartment (Jenkins et al. 2003)
or total above-ground biomass (Somogyi et al. 2008), which is a fundamental variable for
estimating net carbon dioxide exchange between the land surface and the atmosphere.
Therefore, GSV is an important parameter not only for acquiring a more detailed
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evaluation of terrestrial biosphere models (Beer et al. 2006) but also for inversely
estimating the parameters of biosphere models (Carvalhais et al. 2010).

To understand the status of national forest resources, China carries out a national
forest continuous inventory every 5 years and the survey and design of a forest resource
plan every 10 years (Yang et al. 2003). The investigation data used to survey and evaluate
forest area are traditionally acquired manually, and this process requires a great deal of
human and material resources. Remote-sensing technology provides a low-cost and
effective way to obtain large-scale and high-precision data, which play a critical role in
the investigation of GSV. Since the 1970s the use of satellite images, such as Landsat
Thematic Mapper (TM) and Earth-observing Satellites (SPOT), for estimating continuous
forest parameters has been widely studied (Kilkki and Paivinen 1987; Katila and Tomppo
2001; Cao et al. 2009).

There are three main types of remote-sensing data used for the retrieval of GSV:
airborne lasers, Landsat TM, and lidar. Synthetic aperture radar data also play a major role
in estimating GSV. In 1984, Nelson et al. (1984,1988) began estimating forest canopy
density using airborne laser data, and estimated forest biomass and volume using laser
data in 1988. Naesset et al. (2002) used three methods to estimate average tree height, the
height of dominant tree species, average diameter, and other variables in 233 sample areas
based on laser data. Lidar can extract vertical structure information of vegetation, and this
technology can be applied to estimating forest GSV. Estimated forest GSV can be accurate
for coniferous forests of average age or for single species using lidar data. Donoghue et al.
(2007) estimated GSV using two methods in three study areas of Scotland using lidar data.
He et al. (2012) studied forest stand biomass estimations using Advance Land Observing
Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data
based on lidar-derived prior knowledge in the Qilian Mountains, western China, and the
results showed that at the stand level and in different biomass grades, backscatter
coefficient increased with increase in forest biomass.

In previous studies, several spectral features of Landsat TM were tested and compared
in relation to forest GSV estimates, including the normalized difference vegetation index,
the environmental vegetation index, and a combination of spectral features. Forest GSV
was found to be correlated with the spectral features to some extent (Gemmell 1995;
Tomppo et al. 2002; Chirici et al. 2008). Gemmell (1995) studied the impact of each band,
canopy density, forest stand size, and topographic features on GSV retrieval based on
Landsat TM data. The results showed that TM4 and TM5 were highly correlated with
GSV. The research results provided a theoretical basis for Landsat TM in the quantitative
estimation of GSV. Fazakas et al. (1999) applied TM data and national forest inventory
data to estimate GSV in central Sweden by the k-nearest-neighbour (k-NN) method.
Tomppo et al. (2002) established a nonlinear regression model to estimate GSV in a
large area by the non-parametric nearest-neighbour method based on Landsat TM, Indian
Remote Sensing Satellites-1C Wide Field Sensor (IRS-1C WiFS), and sample data. The
results showed that GSV could be retrieved more accurately when Landsat TM and
IRS-1C WiFS were combined. Mäkelä and Pekkarinen (2004) applied the average of
TM data pixels as a basis from which to estimate the GSV of different tree species using
the k-NN algorithm. Diamantopoulou (2005) compared the artificial neural network
(ANN) model and several other nonlinear models to estimate the GSV of pine trees and
found that the root mean square error (RMSE) of the three-layer forward feedback ANN
model was lower than that of the optimal nonlinear regression model. Gu et al. (2006)
applied the k-NN method to Landsat TM images to improve the estimation of forest
volume. Chirici et al. (2008) described the application of non-parametric and parametric
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methods for estimating forest GSV using Landsat images on the basis of data measured in
the field and integrated with ancillary information. The results cast a promising light on
the use of non-parametric techniques for forest attribute estimation and mapping, with
accuracy sufficiently high to support forest planning activities in complex landscapes.

A comprehensive analysis of the correlation between forest GSV and image informa-
tion extracted from Landsat TM is currently lacking, and few studies have compared the
retrieved results of forest GSV based on Landsat TM images using linear and nonlinear
models (Mäkelä and Pekkarinen 2004; Gu et al. 2006; Chirici et al. 2008). In this article,
we describe the application of a multiple stepwise regression (MSR) model and back-
propagation neural network (BPNN) for retrieving forest GSV in Xiuyan using Landsat
TM images from 2006 and field data from the national forest continuous inventory.

2. Study area and data

2.1. Study area

Our study area is located in Xiuyan in southeastern Liaoning, China (Figure 1). Xiuyan’s
latitude ranges from 40° 00′ to 40° 50′ N and its longitude from 122° 52′ to 123° 46′ E,
constituting a total area of 4507 km2. Xiuyan is a Manchu autonomous county and is
under the administration of Anshan. Xiuyan has a population of 500,000, with 20 towns
and 3 townships are under its administration. Xiuyan’s forest cover is 73%, the main type
being broadleaf forest consisting mainly of oak. In addition, there is a smaller population
of poplar trees.

Xiuyan has a monsoon-influenced humid continental climate, characterized by hot,
humid summers because of the monsoon and long, cold, and very dry winters because of
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Figure 1. Study area. (a) Location of Liaoning in China; (b) location of Xiuyan in Liaoning; (c)
false-colour composite of TM bands 4, 3, 2. The green points represent the selected sample points in
the study area.
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the Siberian anticyclone. A majority of the annual rainfall occurs in July and August. The
annual average temperature is 7.39°C, and the average annual rainfall is 775.8–933.8 mm
(https://en.wikipedia.org/wiki/Xiuyan_Manchu_Autonomous_County).

2.2. Data

The measured field data are from the national forest continuous inventory from 2005. This
inventory is carried out by the State Forestry Administration, PR China, which aims to
understand the status of forest resource and trends on a large scale. The main survey
factors are average tree diameter and height and GSV. The survey is carried out periodi-
cally at fixed sample points, and the area of each sample point is 0.0667 ha. The density
of sample points is set according to the required estimate precision of forest land area,
growing stock, amount of growth and consumption. Distance between points can vary
from 2 × 2 to 8 × 8 km (FAO 2007); in Xiuyan this is 4 km from north to south and 8 km
from west to east.

With regard to remote-sensing data, we chose one high-quality image (30 m ground
pixel resolution) acquired on 18 September 2006, from Landsat TM data. The technical
parameters of Landsat-5 are shown in Table 1. Other auxiliary data used include the
Advanced Spaceborne Thermal Emission and Reflection Radiometer Digital Elevation
Model (ASTER DEM) with a resolution of 30 m, and we generated factors including
slope and aspect for the study area according to ASTER DEM.

3. Methods

3.1. Pre-processing

The pre-processing of Landsat TM images mainly includes geometric correction, orthor-
ectification, atmospheric correction, image cropping, and classification. In this article,
atmospheric correction of the Landsat TM image was performed using the Fast Line-of-
Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) software package in
Environment for Visualizing Images (ENVI). The FLAASH module was developed by
Spectral Sciences under the sponsorship of the US Air Force Research Laboratory (Adler-
Golden et al. 1999). The module incorporates Moderate Resolution Atmospheric
Transmission (MODTRAN) 4 radiation transfer code with all MODTRAN atmosphere
and aerosol types to calculate a unique solution for each image. The input parameters of
the MODTRAN model can be divided into five categories of parameter: satellite opera-
tion, sensor, atmospheric, observation geometry, and surface (Berk et al. 1999; Zheng
et al. 2011). Image cropping was utilized to extract Xiuyan from the Landsat TM image,

Table 1. Technical parameters of Landsat-5.

Band Wavelength (μm) Spectral range Ground pixel resolution (m)

1 0.45–0.52 Blue 30
2 0.52–0.60 Green 30
3 0.63–0.69 Red 30
4 0.76–0.90 Near-infrared 30
5 1.55–1.75 Shortwave infrared 30
6 10.4–12.5 Thermal infrared 120
7 2.08–2.35 Shortwave infrared 30

32 S. Zheng et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 0

1:
22

 0
4 

A
pr

il 
20

14
 

https://en.wikipedia.org/wiki/Xiuyan_Manchu_Autonomous_County


and classification based on the maximum likelihood methods was applied to extract the
forest area in Xiuyan. According to sample points with the attribute of land-cover types
from the national forest continuous inventory in Xiuyan, we identified land-cover types
from the Landsat TM image: forest and no-forest areas including farmland, settlement,
and water. According to the classification map, forest cover is 70%, which is close to the
actual 73% forest cover. In addition, we calculated the confusion matrix and kappa
coefficient (0.9) for the resulting classification.

The pre-processing for the measured field forest GSV data mainly included choosing
sample points of forest GSV greater than 0 from the national forest continuous inventory
in Xiuyan and then deleting abnormal points. Twenty-eight field data points were saved
for future study (Figure 1(c)). Because the ground pixel resolution of the Landsat TM
image is 30 m, the area of each pixel is 900 m2. However, the area of each sample point
from the national forest continuous inventory is 0.0667 hm2 or 667 m2. Therefore, before
establishing the retrieval model for forest GSV, we calculated forest GSV of the pixel
corresponding to the sample point using Equation (1):

V p ¼ 900

667
� Vs; (1)

where Vp refers to the GSV of one sample point and Vs represents the GSV of the pixel
corresponding to the sample point.

3.2. Remote-sensing factors

Based on the Landsat TM data after pre-processing, we acquired the surface reflectance
for each band of the Landsat TM (except band 6) and then acquired the vegetation index
through band calculation of the Landsat TM image, obtaining factors from principal
component analysis (PCA) and tasselled cap transformation. In addition, we obtained a
further 30 variables through texture analysis using a window size of 3 × 3 pixels for the
Landsat TM image. All the remote-sensing factors used are listed in Table 2.

In Table 2, Band 1 refers to the surface reflectance of TM band 1, as do Band 2, Band
3, etc. Band 5/Band 4 and Band 2/Band 4 represent Band 5 divided by Band 4 and Band 2
divided by Band 4, respectively. Brightness, Greenness, and Third denote the brightness,
greenness, and third component after tasselled cap transformation, respectively. PCA 1,
PCA 2, and PCA 3 represent the first three components after PCA. Equations and
explanations of the vegetation index including DVI, SAVI, ARVI, PVI, NDVI, etc., are
as follows.

Table 2. Remote-sensing factors calculated from the Landsat TM image.

Factor type Remote-sensing factors

Band reflectance Band 1, Band 2, Band 3, Band 4, Band 5, Band 7
Band math DVI, SAVI, ARVI, PVI, NDVI, RVI,

(Band 5)/(Band 4), (Band 2)/(Band 4)
Tasselled cap transformation Brightness, Greenness, Third
Principal component analysis PCA 1, PCA 2, PCA 3
Terrain DEM, Aspect, Slope
Texture analysis Range, mean, variance, entropy, skewness

International Journal of Remote Sensing 33
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DVI (difference vegetation index) is very sensitive to changes in soil background and
can identify vegetation and water (Jordan 1969):

DVI ¼ Band4ð Þ � Band3ð Þ: (2)

NDVI (normalized difference vegetation index) increases the vegetation response capacity
and is currently the most widely used vegetation index:

NDVI ¼ ðBand 4Þ � ðBand 3Þ
ðBand 4Þ þ ðBand 3Þ : (3)

Compared with NDVI, SAVI (soil-adjusted vegetation index) adds the soil adjustment
coefficient L, which is determined by its actual situation and ranges from 0 to 1;

SAVI ¼ððBand 4Þ � ðBand 3ÞÞ � ð1 þ LÞ
ððBand 4Þ þ ðBand 3ÞÞ � ð3 þ LÞ : (4)

To eliminate the influence of the atmosphere, Kaufman and Tanre (1992) introduced
ARVI (atmospherically resistant vegetation index). This index corrects for radiance in the
red channel using the radiance difference between the blue and red channels when
defining NDVI;

ARVI ¼ ðBand 4Þ � ð2 � ðBand 3Þ � ðBand 1ÞÞ
ðBand 4Þ þ ð2 � ðBand 3Þ � ðBand 1ÞÞ : (5)

PVI (perpendicular vegetation index) eliminates the influence of soil background and is
less sensitive to atmospheric influences than the other vegetation indices:

PVI ¼ ðBand 4Þ � a� ðBand 3Þ � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ a2Þp : (6)

In Equation (6), both a and b represent coefficients. Owing to the markedly different
responses to green vegetation between the red and near-infrared bands, the ratio vegeta-
tion index (RVI) can fully express the difference between these:

RVI ¼ ðBand 4Þ=ðBand 3Þ: (7)

Terrain factors include ASTER DEM, with a resolution of 30 m, and slope and aspect,
which were generated using ASTER DEM.

PCA is a way of identifying patterns in data and expressing the data to highlight their
similarities and differences. The other main advantage of PCA is that once these patterns
in the data have been identified and data have been compressed (i.e. by reducing the
number of dimensions), little information is lost (Jiang et al. 2006; Francioso et al. 2008).
We selected the first three principal components, which were marked as PCA 1, PCA 2,
and PCA 3.

Tasselled cap transformation is a useful tool for compressing spectral data into a few
bands associated with physical scene characteristics (Crist and Cicone 1984). This
transformation can maximize the separation of soil and vegetation. We chose the first
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three bands generated from tasselled cap transformation, which were marked as
Brightness, Greenness, and Third.

Texture is one of the most important features of remote-sensing images. Texture
analysis refers to the process of extracting texture features through image processing
techniques and analysing the texture quantitatively or qualitatively. In this article, five
texture features – range, mean, variance, entropy, and skewness – were derived from the
Landsat TM image.

3.3. Regression model

To retrieve forest GSV for a large-scale area, we established the simple regression model
based on all remote-sensing factors. We then chose the stepwise regression method to
establish the MSR model. The regression model was performed using Statistical Product
and Service Solutions (SPSS) software, version 16.0 (SPSS Inc., Chicago, IL, USA). A
two-tailed analysis was used for all statistical tests, and p-values < 0.05 were considered
statistically significant.

With regard to the validation of the results retrieved by a multiple regression model,
we applied the leave-one-out cross-validation. An explanation of leave-one-out cross-
validation follows here. First, among all sample points, we excluded one every time and
established the model using the remainder of the sample points. We then predicted the
excluded sample point using the established model. We repeated this process until every
sample point was predicted once. Then, we validated the retrieved results based on
measured field forest GSV and predicted forest GSV.

3.4. Back-propagation neural network

BPNN is considered one of the most effective methods for solving ANNs. Because ANNs
have proved to be powerful tools that are particularly suited for various tasks in deducing
uncertainties and because the models have the ability to learn and extract x–y relationships
from the training samples, their flexibility is a decisive asset compared with parametric
techniques that require the assumption of a specifically hard model form (Bai and Jin
2005). BPNN is an error back-propagation algorithm for the multi-layer network and is
based on the main principle that several parameters will have an impact on forecasting
factors as network inputs and will form a network with foresting factors as the output. The
network is used to carry out self-organizing learning, achieving targets by ceaselessly
projecting the impact factors of the nonlinear mapping relationship between the expecta-
tions and observations with a smaller mean square error (MSE). BPNN contains an input
layer, a hidden layer, and an output layer. The weights of the neural network are a feed-
forward or feedback process through a number of interconnected neurons, which are
primarily assigned randomly then adjusted by decreasing MSE (Cao et al. 2010).

4. Results

4.1. Simple regression model

As Table 2 shows, we divided the remote-sensing factors into six types. To quantify the
impact of each factor on forest GSV, we extracted each remote-sensing factor’s value in
the sample point using the nearest-neighbour resampling technique and then analysed the
correlation between forest GSV and each remote-sensing factor using Pearson correlation
analysis. The results are shown in Table 3. Subsequently, we established the simple
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regression model using the remote-sensing factor, which was significantly correlated with
forest GSV. A summary of the model is shown in Table 4.

First, we analysed the correlation between the surface reflectance of the six bands and
measured forest GSV, and found significant correlation in all cases. The model summary
shows that among these six bands, Band 1 had the highest correlation (R2 0.482) and the
lowest standard error of the estimate (3.0975). After analysing the correlation between
variables from band math and measured forest GSV, DVI, PVI, and (Band 2)/(Band 4)
were found to be significantly correlated with forest GSV. In addition to these factors
frequently used in previous studies, we also found that among the terrain factors and those
from tasselled cap transformation and PCA, DEM, Slope, PCA 1, Brightness, and Third
were significantly correlated with forest GSV. Finally, we analysed the correlation
between 30 factors from texture analysis for each band and measured forest GSV. The
results showed that Band 1mean, Band 2mean, and Band 3mean were highly correlated with
forest GSV (R2 > 0.45).

4.2. Multiple regression model

Using simple regression, we analysed the correlation between each remote-sensing factor
and forest GSV (Table 2) and established a simple regression model for retrieving forest
GSV. The surface reflectance of six bands, vegetation index, and all other available
ancillary information were correlated with forest GSV to varying degrees, so these were
considered as potential independent variables for forest GSV estimation. We established
an MSR model using these remote-sensing factors. Even when a variable was not

Table 4. Model summary of simple regression model.

Model Variable R2 Std. error of the estimate Sig.

1 Band 1 0.482 3.0975 0.000
2 Band 2 0.436 3.2326 0.000
3 Band 3 0.342 3.4925 0.001
4 Band 4 0.212 3.8195 0.014
5 Band 5 0.268 3.6817 0.005
6 Band 7 0.256 3.7129 0.006
7 DVI 0.161 3.9422 0.034
8 PVI 0.163 3.9383 0.033
9 (Band 2)/(Band 4) 0.162 3.9408 0.034
10 PCA 1 0.242 3.7461 0.008
11 Brightness 0.292 3.6221 0.003
12 Third 0.192 3.8692 0.020
13 DEM 0.199 3.8514 0.017
14 Slope 0.232 3.7711 0.009
15 Band 1mean 0.642 2.5754 0.000
16 Band 2mean 0.542 2.9142 0.000
17 Band 3range 0.154 3.9580 0.039
18 Band 3mean 0.455 3.1783 0.000
19 Band 4range 0.318 3.5549 0.002
20 Band 4mean 0.199 3.8513 0.017
21 Band 4variance 0.261 3.7004 0.005
22 Band 5mean 0.300 3.6012 0.003
23 Band 7mean 0.293 3.6196 0.003

Note: Std., Standard.
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significantly correlated with forest GSV, it still could be introduced to the MSR model if
it, combined with other variables, could influence forest GSV significantly. Therefore, the
MSR model in this article was the optimal MSR model based on the 53 remote-sensing
factors listed in Table 2. The model summary and model coefficients are shown in Tables
5 and 6, respectively. The resulting regression model is shown in Equation (8), with R2 of
0.80. In the optimal MSR model, Band 1mean, Band 3skewness, and PCA 3 were included,
and the predicted forest GSV using this model was basically consistent with the measured
forest GSV (Figure 2):

GSV ¼ ð12:289� 743:653Þ � Band 1meanð Þ þ ð2:179� 10�8Þ
� Band 3skewnessð Þ � 93:446� PCA 3ð Þ: (8)

Table 6. Coefficients of the MSR model.

Model
Independent
variable

Dependent
variable

Nonstandardized
coefficients

Std. error of the
nonstandardized
coefficients Sig.

1 Constant, Measured
forest
GSV

12.289 1.028 0.000
Band 1mean, –743.653 83.289 0.000
Band 3skewness, 2.179 × 10−8 0.000 0.001
PCA 3 –93.446 33.801 0.011

Table 5. Model summary of the MSR model.

Model Variable R2 Std. error of the estimate Sig.

1 Band 1mean, Band 3skewness, PCA 3 0.80 2.02434 0.000
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Figure 2. Relation between measured and predicted forest GSV.
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We validated the results retrieved by the MSR model through leave-one-out cross-valida-
tion for the 28 field data points. The cross-validation results are shown in Figure 3, with
an R2 of 0.70 and RMSE of 2.3 m3, demonstrating that the model was highly accurate.
Based on the MSR model shown in Equation (8), we retrieved forest GSV in the study
area shown in Figures 4(a) and (c). In this figure, white represents a non-forested area.
Forest GSV of most pixels in the study area ranged from 0 to 2 m3.

4.3. Back-propagation neural network

There were three main steps to achieving prediction of forest GSV by BPNN: network
creation, learning, and network simulation. In the process of learning, the input layer
included seven basic factors – the reflectance of six bands and DEM – and the output
layer was forest GSV. There were two main reasons for only including these seven basic
factors and excluding the other remote-sensing factors. First, the other remote-sensing
factors could be calculated from these seven basic factors. Second, the accuracy of the
predicted results met our requirement using these seven basic factors. The predicted result
was highly consistent with measured forest GSV, with R2 of 1 and RMSE of 0.0014 m3

for the 28 field data points. We then used this trained network to predict forest GSV in the
study area, and the results are shown in Figures 4(b) and (d).

5. Discussion

This article focused on retrieving forest GSV using Landsat TM images and measured
data using both the MSR model and BPNN. The measured data in the study area were
from the national forest continuous inventory, and 28 field data points were saved after
deleting abnormal points. By analysing the correlation between forest GSV and the 53
remote-sensing factors, we found that the surface reflectance of all six bands was
significantly correlated with forest GSV, and Band 1 had the highest correlation
among the six bands. We then analysed the correlation between forest GSV and other
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Figure 3. Leave-one-out cross-validation result of forest GSV from the MSR model.
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remote-sensing factors including vegetation index, PCA, tasselled cap transformation,
and terrain. Each type of remote-sensing factor was correlated with forest GSV to some
extent, but the coefficient of the Pearson correlation was not high.

In previous studies on retrieval of forest GSV, most researchers studied the correlation
between this and band surface reflectance or vegetation index, whereas few researchers
took texture features into account. In this article, considering that the texture information
might be related to the retrieval of forest GSV, we calculated the coefficients of the
Pearson correlation between forest GSV and texture features, including each band’s data
range, mean, variance, entropy, and skewness. The results showed that forest GSV was
significantly correlated with many texture features and was particularly highly correlated
with Band 1mean, Band 2mean, and Band 3mean, because the texture feature considered the
spatial relationship between the pixels, which is different from pixel-based spectral
features (Atkinson et al. 2000). The texture feature improves the accuracy of image
analysis and feature extraction (Berberoglu et al. 2000). Levesque et al. (2003), Moskal
et al. (2004), and Kayitakire et al. (2006) studied forest health, pest status, and tree age,
respectively, based on image texture analysis, and the results showed that the accuracy of
the extracted information was higher using texture features than spectral features. In the
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Figure 4. Forest GSV maps of the study area. (a) Map retrieved from the MSR model; (b) map
retrieved from BPNN; (c) and (d) forest GSVof the local region retrieved from the MSR model and
BPNN, respectively.
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present article, from the false-colour composite of TM bands 4 (red), 3 (green), and 2
(blue), the distribution of forest GSV was consistent with texture feature to some extent.
For example, the texture feature of an area with dense vegetation was more uniform,
whereas that of an area with sparse vegetation exhibited greater differences. The texture
features of different species were also somewhat different. Hence, the accuracy of
retrieving the forest GSV could be improved by the use of texture information.

An optimal MSR model for retrieving forest GSV based on the 53 remote-sensing
factors was established. In addition to Band 1mean, which was most highly correlated with
forest GSV, Band 3skewness and PCA 3 were also included in the regression model. The R2

of the regression model was 0.80, which was better than any simple regression model
based on a single remote-sensing factor. Leave-one-out cross-validation was applied to
validating the retrieved result, and the predicted forest GSV was basically consistent with
measured forest GSV, with R2 of 0.70 and RMSE of 2.3 m3.

In addition to the MSR model, we built a BPNN to retrieve forest GSV. The input
layer included seven variables – the reflectance of six bands and DEM. The predicted
result from BPNN was highly consistent with measured forest GSV for the 28 field data
points, a much better result than that of the MSR model. In addition, in comparing Figures
4(c) and (d), the forest GSV map retrieved from BPNN was much more consistent with
the texture feature of the Landsat TM image than that retrieved from the MSR model.

During the process of building BPNN, we selected the appropriate learning algorithms
and trained the network. We then predicted forest GSV using the trained network. Owing
to the ‘black box’ operation of BPNN, we could not analyse the correlation between each
factor and the forest GSV quantitatively. However, in the MSR model, we could clearly
understand the impact of each factor on forest GSV and establish the linear regression
equation.

Similar studies have focused on retrieval of forest GSV using optical remote-sensing
data, the remote-sensing factors being mainly band surface reflectance or vegetation
index. This article describes retrieval of forest GSV using two different methods using
Landsat TM images. We found that the accuracy of retrieving forest GSV could be
improved when taking into account texture information from Landsat TM images, so
texture information in regard to optical remote-sensing data is important for retrieving
forest GSV. Moreover, we compared the advantages and disadvantages of the MSR model
and BPNN using Landsat TM images, and we should choose the appropriate method to
meet our specific needs.

6. Conclusion

Three important conclusions can be drawn from this study. First, the comprehensive
analysis of the correlation between forest GSV and image information extracted from
Landsat TM images showed that in addition to the surface reflectance of six bands and
other remote-sensing factors described in previous studies, forest GSV was highly corre-
lated with certain texture factors. Second, based on the 53 remote-sensing factors, an
optimal MSR model was established for retrieving forest GSV with R2 of 0.80. Leave-
one-out cross-validation demonstrated that the regression model worked well, with R2 of
0.70. Moreover, the regression model was much better than any simple regression model
using a single factor. Third, the predicted forest GSV using BPNN was highly consistent
with measured forest GSV. Although BPNN failed to analyse the impact of each factor on
forest GSV and the retrieval equation, it was better at both predicting forest GSV for the
field data and retrieving the forest GSV map for the study area.
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