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Retrieval of 30-m-Resolution Leaf Area Index From
China HJ-1 CCD Data and MODIS Products
Through a Dynamic Bayesian Network

Yonghua Qu, Yuzhen Zhang, and Huazhu Xue

Abstract—The leaf area index (LAI) is a characteristic param-
eter of vegetation canopies. This parameter is significant in re-
search on global climate change and ecological environments. The
China HJ-1 satellite has a revisit cycle of four days and provides
CCD (HJ-1 CCD) data with a resolution of 30 m. However, the
HJ-1 CCD is incapable of obtaining observations at multiple an-
gles. This is problematic because single-angle observations provide
insufficient data for determining the LAI. This article proposes a
new method for determining the LAI using the HJ-1 CCD data.
The proposed method uses background knowledge of the dynamic
land surface processes that is extracted fromMODerate resolution
Imaging Spectroradiometer (MODIS) LAI data with a resolution
of 1 km. The proposed method was implemented in a dynamitic
Bayesian network scheme by integrating an LAI dynamic process
model and a canopy reflectance model with the remotely sensed
data. The validation was conducted using field LAI data collected
in the Guantao County of the Hebei Province in China. The results
showed that the determination coefficient between the estimated
and the measured LAI was 0.791, and the RMSE was 0.61. The re-
sults suggest that this algorithm can be widely applied to determine
high-resolution leaf area indexes using data from the China HJ-1
satellite even if the information from single-angle observations are
insufficient for quantitative application.

Index Terms—Bayesian method, HJ-1 CCD, leaf area index,
MODIS.

I. INTRODUCTION

T HE leaf area index (LAI) is one of the most important
structural parameters in land ecosystems, and it influences

the substance and energy exchange between vegetation and the
atmosphere. The LAI is also a key input factor for hydrological,
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ecological, and climate models [1], [2]. Satellite remote sensing
is an effective way to obtain regional LAI data. Currently, most
systems that can operationally determine the LAI from remote
sensing data are based in North America and Europe, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI, the VEGETATION CYCLOPES global products, and the
Advanced Very-High-Resolution Radiometer (AVHRR) LAI
products [3]–[5]. These data sets provide LAI products with
a coarse resolution (approximately 1 km). Higher-resolution
(approximately 30 m) products may provide important input
data for land and resource monitoring and ecological and envi-
ronmental evaluations. In the past decades, many studies have
attempted to produce higher-resolution LAI products [6]–[8].
The first land environment satellite (HJ-1) launched by China

in 2009 has a revisit cycle of 4 days and a 4-band CCD camera
(Blue: 0.43–0.52 m, Green: 0.52–0.60 m, Red: 0.63–0.69
m, and Near-infrared: 0.76–0.90 m) with a 30-m spatial res-
olution [9]–[11]. Li et al. [12] compared the spectral signa-
ture of HJ1-CCD and Landsat5 TM sensors and found that the
coefficient of determination approached unity considering the
imaging and spectral response characteristics. Currently, con-
cern about estimating the vegetation parameters fromHJ-1 CCD
data is increasing [13]. However, due to the weather conditions
(e.g., cloud cover), most of HJ-1 CCD data are hard to interpret
and use, which will lead to time-series discontinuities and low
precision levels. Thus, in this study, additional MODIS time-se-
ries information was incorporated into the estimation of the LAI
to compensate for the insufficiencies in the HJ-1 CCD data.
The time-series MODIS LAI can provide vegetation growth

information, which can effectively constrain the temporal tra-
jectories of the estimated LAI from the HJ-1 CCD data. This
hypothesis has been widely used in remote sensing data assimi-
lation to enhance the temporal continuity of the estimated results
[14]. We implemented this under the framework of dynamic
Bayesian networks (DBN) because it addresses uncertainties
using a Bayesian probability [15], [16]. Our previous studies
demonstrated the efficiency of DBN in estimating time-series
LAI from multi-source datasets [17], [18]. The purpose of the
present study was to study the use of the dynamic information
of land surface parameters extracted from coarse-resolution his-
torical data to generate quantitative high-resolution LAI from
China HJ-1 CCD data.

1939-1404 © 2013 IEEE
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Fig. 1. Location of the study area and distribution of the LAI sampling spots.

II. DATASETS

A. The Study Area

The field experiment was conducted in Guantao County in the
Hebei Province (115.13 , 36.52 ) of China. The 6-m reso-
lution imagery from Google Earth of the study area is shown
in Fig. 1(a). The experimental observation team designed the
field observation scheme corresponding to the pixel scale of
the HJ-1 CCD. The LAI values were measured using the LAI-
2000 instrument on June 22, July 24, August 14, and September
16, 2010. The distribution of the LAI sampling points approx-
imately forms a cross, as illustrated by the red cross shown
in Fig. 1(a). All of the sampling spots surround an automatic
meteorological station (Fig. 1(b)). The spatial extent of study
area is approximately and is shown as a blue square
in Fig. 1(a). During this time period, the land cover in the re-
search area was dominated by corn, as shown in Fig. 1(c) and
Fig. 1(d), which show photographs of the crop growth state in
the spring and summer, respectively. In addition, the geological
coordinates of some of the crossroads were also measured for
geometric precision corrections of the HJ-1 satellite data.

B. MODIS LAI Product

The MCD15A2 product, which was constructed from 8
days of observation data with a spatial resolution of 1 km, was
adopted as the data source for constructing the background
information. The temporal distribution is from the Julian day

161 to Julian day 273 in 2010. The time-series information
of the MODIS LAI data reflects the dynamic changes of the
LAI. Using a dynamic process model driven by the MODIS
LAI data, the background information was introduced into the
estimation of the time-series LAI by providing prior knowledge
of the vegetation LAI dynamics during the growth season,
which may improve the accuracy and temporal continuity of
the retrieved results.

C. HJ-1 CCD Data

We chose images with low cloud cover ( 10% overall) for
the LAI retrieval. There are four HJ-1 CCD images that sat-
isfy this requirement during the period from June 22, 2010 to
September 16, 2010, when the field LAI measurements were
available. The satellite data were available on June 28, 2010,
July 6, 2010, July 20, 2010, and August 16, 2010. Currently, the
available HJ-1 CCD data are level-2 products that have not been
precisely geometrically corrected. Before the HJ-1 CCD data
were applied to the LAI retrieval, the data were re-processed
using precise geometric and atmospheric corrections and trans-
formed into surface reflectance values. We used the GPS co-
ordinates of the crossroads with typical geological symbols in
Google Earth as auxiliary targets for the geometric correction of
the HJ-1 CCD images. The correction precision (RMSE) of the
four images was equal to 0.2122, 0.2176, 0.0862, and 0.3417
pixels, respectively. Then, a FLAASH algorithm was used for
the atmospheric correction to obtain the corresponding surface
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Fig. 2. The HJ-CCD false color images of the study area corresponding to (a) June 28, 2010, (b) July 6, 2010, (c) July 20, 2010, and (d) August 16, 2010.

Fig. 3. Schematic diagram of time series Bayesian retrieval.

reflectance. The false color composite images corresponding to
these four dates are illustrated in Fig. 2.

III. ALGORITHM AND MODEL

A. Time-Series Bayesian Model

Fig. 3 shows schematic diagrams of the time-series LAI
retrieval using dynamic Bayesian networks extended to the
time slice T. The round nodes represent random variables.
The gray nodes represent the observed reflectance, and the
non-filled nodes represent the target variable LAI. is the
reflectance at time slice T, and is the LAI at time slice T.
The directional arcs connecting the nodes in Fig. 3 represent
the dependence or influence relationship between the variables.
The arcs pointing to the right represent the state transition
relationship between two adjacent time slices of the LAI (the
green dashed frame in Fig. 3). The transition relationship is rep-
resented quantitatively as a dynamic process. The arcs pointing
upward represent the mapping relationship between the target
variable LAI and the observation variable Ref (indicated by the
red curved frame). The mapping relationship is represented as
a canopy reflectance model.
Assumed that the remote sensing observa-

tion of the time series has already been obtained:
. Then,

the posteriori probability of at the th time slice is
, which can

be expressed as . According to the

Bayesian principle (detailed information are referred in our
published work [17]).
Equation (1), shown at the bottom of the page, is the basic

algorithm for LAI retrieval using the DBN method. This equa-
tion integrates the dynamic information of the LAI, the canopy
reflectance model, and the remote sensing observations to com-
pute the posterior probability distribution of LAI. The core of
the DBN method consists of the following four steps: 1) ob-
taining the posterior probability distribution of LAI at the pre-
vious moment, which is described as , 2)
calculating the state transition probability
from the dynamic process model, 3) calculating the likelihood
probability of the observational data using the
look-up table generated by the canopy reflectance model, and 4)
calculating the posterior probability of the LAI at the th time
slice based on (1). The LAI time series is obtained through the
sequential iteration of the four steps. The estimated LAI can be
either the mean value or the maximum probability value of the
distribution. In this study, we adopted the mean value as the re-
trieval result.

B. The Canopy Reflectance Model and Look-Up Table

The SAILH (Scattering by Arbitrarily Inclined Leaves with
Hot spot effect) model proposed by Kuusk is an extension of the
SAIL model [19], [20]. The canopy structure is assumed to be a
horizontally well-distributed turbidmedium, which ismore suit-
able for the canopy of crops. The bidirectional reflectance func-
tion of the canopy was considered to be a function involving the
sun, observational geometry, canopy structure parameter (LAI
and leaf inclination angle distribution function), and leaf/soil
spectral features. Because it takes into consideration the influ-
ence of leaf size and shadow, it can describe the hot-spot ef-
fects of the canopy. In most studies, the LAI was retrieved using
an inverting SAILH model that required the input of parameter
values, except for the free LAI parameter [19], [21]. In most in-
version problem, a certain optimization algorithm is used for the
iteration to minimize the error between the simulated canopy re-
flectance and the observed data [22], [23]. An efficient way to

(1)
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TABLE I
INPUT PARAMETERS AND THEIR SAMPLING METHOD IN THE SAILH MODEL

increase the speed of the inversion process is to simulate the
SAILH model offline. Before starting the inversion, a look-up
table is usually generated from the model simulation [24]. Cur-
rently, many studies adopt a look-up table method for LAI re-
trieval [25], [26]. For example, in the MODIS LAI algorithm,
the input parameters are determined according to the land type.
For different land types, the reflectance is correspondingly sim-
ulated to generate the look-up table. The key question is how to
determine the model input parameters for different land types
to ensure that the simulated reflectance is in agreement with the
observed reflectance. One solution is to match the simulated re-
flectance by adjusting the model input parameters [27]. If the re-
trieval results exhibit a large deviation from the reference value,
then the input parameters of the model need to be adjusted until
the retrieved results are close to their reference values. Alter-
natively, it is possible to adjust the input parameters according
to the observed reflectance such that the reflectance simulated
in the red spectrum and the near-infrared spectrum fall within a
certain density in the spectral space [28]. The first method re-
quires field-measured land surface data. Because the available
experimental LAI data are limited, the second method was used
to adjust the look-up table in this study. The look-up table was
generated based on the variation range and the distribution of
every input parameter in the canopy reflectance model given
by the existing a priori knowledge (Table I). Then, a statis-
tical analysis was conducted on the frequency distribution of
the red and near-infrared band reflectances and their spectral
spaces based on the observed reflectance data. The purpose of
this step was to eliminate the unreasonable look-up table param-
eters and thus match the simulated reflectance with the observed
reflectance in terms of the frequency distribution and the spec-
tral space. In the LAI retrieval, when new satellite observation
data are available, the likelihood probability of the observed re-
flectance data was calculated in real time.

C. LAI Dynamic Process Model

The MODIS LAI products were chosen and re-analyzed for
dynamic process fitting and for calculating the state transition
probability. Under ideal conditions, one can assume that the
temporal trajectories of the MODIS LAI data coincide with that

of vegetation growth. In this case, a simple equation can be used
to represent the dynamic vegetation processes.
However, many studies have shown that MODIS LAI data

are likely to be overestimated or underestimated in some re-
gions, which leads to temporal and spatial discontinuities. The
influence of these factors should be reduced or eliminated be-
fore using the MODIS LAI data in the dynamic process model
used to conduct the LAI estimation. In this study, the MODIS
time-series LAI were filtered to reduce or eliminate any possible
temporal and spatial discontinuities and thus generate tempo-
rally and spatially continuous MODIS LAI data. The filtered
MODIS LAI data were used to simulate the dynamic process of
vegetation growth using the following equation:

(2)

where is the LAI at time and is the filtered MODIS
LAI at time . is the filtered MODIS LAI (or ). It should
be noted that, for the first time slice, there was no predicted LAI
from the process model. Thus, we used theMODIS LAI directly
as the initial driving data of (2) and then (1).
However, the spatial resolution difference between the

MODIS LAI data and the HJ-1 satellite observations is very
significant: one MODIS pixel contains approximately 33-by-33
HJ-1 CCD pixels. Therefore, from the perspective of proba-
bility and statistics, we considered the MODIS LAI value as the
overall average information of the 33-by-33 HJ-1 CCD pixels.
This average information can represent the prior distribution
of the individual pixel distribution. Every pixel of the HJ-1
CCD can be independently sampled multiple times to obtain
the overall average value. The pixels that are sampled indepen-
dently share the same background information, and their spatial
heterogeneity can be represented as the difference between the
pixels in the HJ-1 CCD data, i.e., the HJ-1 CCD reflectance was
used to update the background a priori probability distribution
of the LAI.

IV. RESULTS AND VALIDATION

Based on theHJ-1 CCD data and the processmodel fitted with
the MODIS LAI, the time-series LAI were retrieved using the
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Fig. 4. Spatial and temporal pattern of the estimated LAI from the HJ-1 CCD and the MODIS data for the year 2010 in Guantao County. The spatial extent
consists of 112 rows and 121 lines. The LAI for June 28, 2010, July 6, 2010, July 20, 2010, and August 16, 2010 were estimated from the HJ-1 CCD data and the
MODIS data, whereas the LAI for July 12, July 28, August 5, and August 21 were estimated from the MODIS data alone through the dynamic process model.

DBNmethod. The spatial and temporal patterns of the estimated
LAI in one growth season are shown in Fig. 4. The estimated
LAI for the day of June 28 is based on prior information pro-
vided by the MODIS LAI that was updated with the reflectance
data from the HJ-1 satellite. Based on this, the dynamic process
model was used for further estimation of the LAI distribution
with a 30-m pixel resolution. When HJ-1 CCD data are avail-
able, the posterior probability distribution of the LAI was up-
dated with the HJ-1 CCD data. As mentioned in Section II-C,
the HJ-1 satellite observations were available for four days: June
28, 2010, July 6, 2010, July 20, 2010, and August 16, 2010.
Thus, the estimated LAI for these days includes the contribution
of both the dynamic process model and the HJ-1 CCD data. In
contrast, for July 12, July 28, August 5, and August 21, 2010,
the LAI were retrieved from the dynamic process model alone.
When the observed data are severely insufficient, a dependence
on the model prediction alone could cause a deviation in the
model estimated value from the true value. This deviation could
only be corrected when the observed data were again available.
Fig. 4 suggests that, when no observed data are available, the
LAI results based on the process model are inferior to the re-
trieved results based on the combination of observations and
model predictions. In this case, the estimated LAI values are
more affected by the MODIS LAI data. As a result, the LAI of
some pixels exhibit the same value as their surrounding pixels
within an area. However, with the incorporation of additional
HJ-1 CCD data, the texture information became richer (Fig. 4).
To evaluate the LAI retrieval results, the field measurement

from June 22, 2010, July 24, 2010, and August 14, 2010 were
used to validate the LAI values of the corresponding pixels on

2010-06-28, 2010-07-20, and 2010-8-16 (Fig. 4), respectively.
The results are shown in Fig. 5. The determination coefficient

between the measured value and the estimated value was
0.791, and the RMSE was 0.61. This result showed a high con-
sistency between the retrieved value and the measured value.
However, it can also be found that the retrieved LAI of some
pixels exhibited large deviations from the field-measured values
partially because the measured LAI and the retrieved LAI were
not temporally matched. For example, the retrieved LAI from
2010-07-20 and the observed LAI from July 24, 2010 had a
4-day lag. During periods of rapid vegetation growth, a four-day
lag could cause a significant deviation. In addition, errors in the
HJ-1 CCD surface reflectance data could also cause a large de-
viation in some pixels. When the observed reflectance had er-
rors in a specific spectral band, the weight of a prior LAI in-
creased compared to the reflectance data, and the retrieved re-
sult would deviate toward the prior LAI. In such cases, the accu-
racy of the retrieved results of the corresponding pixels would
be compromised.

V. CONCLUSIONS

To overcome difficulties in the retrieval of high-resolution
quantitative products from remotely sensed data obtained by
the Chinese environmental satellite HJ-1, this paper proposed
a method that utilizes prior knowledge extracted from low- and
medium-resolution historical data products. By expanding the
traditional Bayesian retrieval model, dynamic changes in the
land surface LAI were introduced to form a new method for the
Bayesian retrieval of time-series LAI. In the proposed method,
the dynamic process model, the canopy reflectance model, and
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Fig. 5. Validation of estimated LAI in the study area.

the remotely sensed data are combined. The algorithm valida-
tion was conducted using LAI data based on HJ-1 CCD data
and field measurements. The validation results show that the
LAI retrieved using the time-series Bayesian algorithm devel-
oped in this paper were consistent with measured values. The re-
trieval algorithm fully utilized the high spatial resolution of the
HJ-1 CCD data and the time-series information of the MODIS
LAI data. This allowed the extraction of land surface parameter
dynamic information from low-resolution data, which assisted
in the LAI retrieval. This method has the potential to generate
high-resolution LAI products with the assistance of low-resolu-
tion remote sensing data.
In the present work, the proposed algorithm was only vali-

dated using crops. For other types of land cover, the look-up
table must be generated using the corresponding canopy re-
flectance model. Therefore, before popularizing this method for
the operational generation of high-resolution LAI products, ex-
isting land surface classification maps are needed, and the LAI
retrieval should be conducted based on different look-up tables
for different types of land cover. In addition, additional valida-
tion work for remote sensing products must be conducted. Field
measurements must be acquired for different land types to vali-
date the quality of the LAI retrieval. The present paper only used
approximately 150 measurement spots for the validation of the
retrieval results. In future work, additional data from different
land types should be included in the LAI retrieval process, and
validations should be conducted in different regions.
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